
Matrix Arithmetic and Batch Normalization

Ronald Yu

January 18, 2018

1 Matrix Arithmetic

Let us review some matrix arithmetic with the simple exercise shown in class.
Suppose we have a three-layer toy network with no biases or non-linearities

that regresses a scalar y such that

y = W3W2W1x

where W3εR1x100, W2εR100x100, W1εR100x10, xεR10, ||x|| ≈ 1, and all weights
are sampled i.i.d from N(0, 1).

Exercise 1
Problem:

∂y

∂W1
=?

∂y

∂W2
=?

∂y

∂W3
=?

Hints:
tr(ABC) = tr(BCA) = tr(CAB) (1)

∇A(AB) = BT (2)

Hint 1 applies for an arbitrary number of matrices (not just 3). Recall that
the trace of a matrix is the sum of its diagonals.

Solution
First, let us treat y as a 1x1 matrix and take the trace of both sides of the

equation:

tr(y) = tr(W3W2W1x)

Since y is a 1x1 matrix, the trace of y is also the value of y. Combining this
information with Hint 1 we have:

y = tr(W3W2W1x) = tr(W2W1xW3) = tr(W1xW3W2)

1

We can then directly apply Hint 2 to obtain:

∂y

∂W1
= (xW3W2)T

∂y

∂W2
= (W1xW3)T

∂y

∂W3
= (W2W1x)T

Exercise 2
Problem:

E[||W1||F] =? E[||W2||F] =? E[||W2||F] =?

Recall that ||M ||F denotes the Frobenius Norm of a mxn matrix M and is
defined by:

||M ||F =

√√√√ m∑
i=1

n∑
j=1

|Mij |2

Hint :

V ar(X + Y) = V ar(X) + V ar(Y)

Recall that the variance of a distribution X is defined by V ar(X) = E[(X−
E(X))2] = E[X2]− E[X]2.

Solution: Since the weights are sampled from a normal distribution of mean
0 and variance 1, for the distribution X of the elements in each of the weight
matrices, we have 1 = V ar(X) = E[X2]− E[X]2 = E[X2]− 0 = E[X2].

Using the hint we can determine the expected value of the Frobenius norm
of each weight matrix M of size mxn by:

E[||M ||F] = E[

√√√√ m∑
i=1

n∑
j=1

Mij]

=

√√√√ m∑
i=1

n∑
j=1

E[|Mij |2]

=

√√√√ m∑
i=1

n∑
j=1

1

=
√
mn

Thus,

E[||W1||F] =
√

1000 E[||W2||F] = 100 E[||W2||F] = 10

2

Exercise 3
Problem:
Let y1 = W1x and y2 = W2W1x.

E[||y1||2] ≤? E[||y2||2] ≤? E[||y||2] ≤?

Hint:

||A||2 ≤ ||A||F

Solution:
Using the Cauchy-Schwartz Inequality, we have:

E[||y1||2] = E[||W1x||2]

≤ E[||W1||2||x||2]

From Example 2 and the hint we know that E[||W1||2] ≤ E[||W1||F] =√
1000, and we are given that ||x|| ≈ 1, so:

E[||y1||2] ≤ E[||W1||2||x||2]

= E[||W1||2|]

≤
√

1000

Similarly, since for y2 we have:

E[||y2||2] = E[||W2y1||]
≤ E[||W2||2||y1||2]

≤
√

1000E[||W2||2]

≤ 100
√

1000

E[||y||2] = E[||W3y2||]
≤ E[||W3||2||y2||2]

≤ 100
√

1000E[||W3||2]

≤ 1000
√

1000

2 Batch Normalization

2.1 Motivation

One takeaway from these exercises is that as we increase the number of layers,
the magnitude of the the upper-bounds of the outputs of the deeper layers

3

and the gradients of each layer increase exponentially. We see that the effects
of small changes in the shallower layers are amplified on deeper parts of the
network. Hence, we must carefully tune our learning rate so that it is not too
high, which would lead to higher magnitude weight values and could easily cause
output values to explode and the network to diverge. However, this leads to an
excessively slow learning rate, causing the network to take an extremely long
time to converge.

However, what if in Exercise 3 we normalized the outputs y1 and y2 to have
a distribution of N(0, 1)? If we did so for each layer then small changes in the
shallower layers would not be amplified in the deeper parts of the network, and
the upper bounds of the outputs deeper parts of the would not explode. If the
output of each layer is normalized to mean 0 and variance 1 anyway, then the
magnitude of the output of each layer is less dependent on the magnitude of the
weights of each layer, so weights with large magnitudes would not easily lead
to exploding outputs and gradients. This would allow us to safely increase the
learning rate with lessened risk of divergence, leading to much faster conver-
gence. This is one of the core motivations behind Batch Normalization.

Another problem that Batch Normalization addresses is internal covariate
shift. What is internal covariate shift? First let us define covariate shift. Covari-
ate shift is when the input distribution to a machine learning system changes.
For a more severe example of covariate shift, if we train a network to classify
animated face models and then give the network real face images as input, the
network will have poor performance as the input distribution is different. We
can imagine that if a network were constantly receiving new input distributions
during training time, the network would continually have to adapt to the new
input distributions and training would be slow.

If we think of each layer and all its following layers in a network as a sub-
network (i.e. Layer 0 and onwards is a subnetwork, Layer 1 and onwards is a
subnetwork, Layer 2 and onwards is a subnetwork, etc.), then we can see how the
input distribution to a subnetwork beginning at Layer i constantly changes as
the weights of the previous layers and therefore the output distribution of Layer
i−1 change. Each subnetwork suffers from such a form of covariate shift, which
the authors of Batch Normalization dub as internal covariate shift, throughout
the whole training process, leading to slower convergence and slightly worse
performance. Batch Normalization seeks to reduce internal covariate shift by
forcing the input distribution of each subnetwork (i.e. each layer) to remain as
a normal distribution throughout the training process.

If you take a look at the figure below from the original paper, you can see that
batch normalization increases convergence speed, that internal covariate shift is
present among the inputs of the activation layers (especially in the earlier stages
of training), and how Batch Normalization resolves internal covariate shift.

2.2 Implementation Details

Typically a Batch Normalization step is done before each non-linear activation
function to ensure that each activation function gets a clean and normalized

4

input. Recall that activation functions are not learnable, so as long as the
input distribution is nice, they won’t exhibit divergent behavior regardless of
the learning rate. Because of this, we don’t need to apply batch normalization
to the output of the non-linearity.

As in the case with gradients, estimating the mean and variance of the entire
distribution of inputs for each subnetwork is costly, so at each iteration Batch
Normalization estimates the mean and variance of the entire input distribu-
tion by calculating the mean and variance of the mini-batch (hence the name).
Using the estimated mean and variance values µ and σ2, the input x to each
subnetwork is normalized to x̂ = x−µ

σ .
You may be concerned that such a normalization step may reduce the rep-

resentation power of the network. For example, if our non-linear activation
function is some fat sigmoid function, then if the input distribution is normal-
ized to have mean 0 and variance 1, then we would restrict the inputs to only the
linear part of the function. To make sure that Batch Normalization is able to
do at least as well as a network without Batch Normalization, the final output
of each Batch Normalization layer is y = γx̂ + β, where γ and β are learnable
parameters. This way, if the optimal thing to do is indeed to have not normalize
x at all, then the network can learn to set γ equal to σ and β equal to µ such
that y = x.

A Batch Normalization layer keeps a running average of µ and σ2, so at test
time the running averages and the learned parameters are used to transform the
input to each Batch Normalization layer.

5

