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Agenda
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• Machine Learning on Extrinsic Geometry (3 weeks)
• Overview of 3D Representations
• Geometric foundation
• Machine Learning on Different 3D Representations

• Volumetric
• Multi-view
• Point cloud
• Parametric
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Shape Representation:  
Origin- and Application-Dependent
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• Acquired real-world objects:

• Modeling “by hand”:

• Procedural modeling

• …
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Shape Representations
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• Points
• Polygonal meshes
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Shape Representations
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• Parametric surfaces
• Implicit functions
• Subdivision surfaces



POINTS
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Output of Acquisition
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Points
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• Standard 3D data from a variety of sources
• Often results from scanners
• Potentially noisy 

• Depth imaging (e.g. by triangulation)
• Registration of multiple images

set of raw scans
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Points
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• Points = unordered set of 3-tuples
• Often converted to other reps 

• Meshes, implicits, parametric surfaces
• Easier to process, edit and/or render

• Efficient point processing / modeling requires  spatial 
partitioning data structure
• Eg. to figure out neighborhoods

shading needs normals!



PARAMETRIC CURVES AND SURFACES



1/23/2018

• Range of a function

• Planar curve:

• Space curve:

Parametric Representation
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Parametric Representation
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• Range of a function

• Surface in 3D:



1/23/2018

Parametric Curves
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• Example: Explicit curve/circle in 2D



1/23/2018

Parametric Surfaces
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• Sphere in 3D
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Parametric Curves and Surfaces
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• Advantages
• Easy to generate points on the curve/surface
• Separates x/y/z components

• Disadvantages
• Hard to determine inside/outside
• Hard to determine if a point is on  

the curve/surface
• Hard to express more complex curves/surfaces! 
➜cue: piecewise parametric surfaces (eg. mesh)



IMPLICIT CURVES AND SURFACES
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Implicit Curves and Surfaces
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• Kernel of a scalar function
• Curve in 2D:
• Surface in 3D:  

• Space partitioning

Outside
Curve/Surface
Inside
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Implicit Curves and Surfaces
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• Kernel of a scalar function
• Curve in 2D:
• Surface in 3D:  

• Zero level set of  
signed distance function
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Implicit Curves and Surfaces

    Hao Su                                                 Lecture      -5 19

• Implicit circle and sphere
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Boolean Set Operations
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• Union:

• Intersection:
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Boolean Set Operations
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• Positive = outside, negative = inside
• Boolean subtraction:

• Much easier than for parametric 
surfaces!
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Implicit Curves and Surfaces
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• Advantages
• Easy to determine inside/outside
• Easy to determine if a point is on the curve/surface

• Disadvantages
• Hard to generate points on the curve/surface
• Does not lend itself to (real-time) rendering
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A related representation
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• Binary volumetric grids

• Can be produced by 
thresholding the distance 
function, or from the 
scanned points directly



POLYGONAL MESHES
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Polygonal Meshes
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• Boundary representations of objects
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Meshes as Approximations of  
Smooth Surfaces
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• Piecewise linear approximation
• Error is O(h2)

25% 6.5% 1.7% 0.4%

3 6 12 24

#faces vs. approximation error
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Polygonal Meshes
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• Polygonal meshes are a good representation
• approximation O(   ) 
• arbitrary topology
• adaptive refinement
• efficient rendering

h2
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Polygon

    Hao Su                                                 Lecture      -5 28

• Vertices:
• Edges: 

• Closed:
• Planar: all vertices on a plane
• Simple: not self-intersecting
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Polygonal Mesh
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vertices edges faces

29

• A finite set M of closed, simple 
polygons Qi is a polygonal mesh

• The intersection of two polygons 
in M is either empty, a vertex, or 
an edge
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Polygonal Mesh
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• A finite set M of closed, 
simple polygons Qi is a 
polygonal mesh

• The intersection of two 
polygons in M is either empty, 
a vertex, or an edge

• Every edge belongs to at 
least one polygon
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Polygonal Mesh
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• A finite set M of closed, simple 
polygons Qi is a polygonal 
mesh

• The intersection of two 
polygons in M is either empty, 
a vertex, or an edge

• Every edge belongs to at least 
one polygon

• Each Qi defines a face of the 
polygonal mesh
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Polygonal Mesh
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• A finite set M of closed, simple 
polygons Qi is a polygonal mesh

• The intersection of two polygons 
in M is either empty, a vertex, or 
an edge

• Every edge belongs to at least 
one polygon

• Each Qi defines a face of the 
polygonal mesh
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Polygonal Mesh
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• A finite set M of closed, simple 
polygons Qi is a polygonal 
mesh

• The intersection of two 
polygons in M is either empty, a 
vertex, or an edge

• Every edge belongs to at least 
one polygon

• Each Qi defines a face of the 
polygonal mesh
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Polygonal Mesh
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• A finite set M of closed, simple 
polygons Qi is a polygonal 
mesh

• The intersection of two 
polygons in M is either empty, 
a vertex, or an edge

• Every edge belongs to at least 
one polygon

• Each Qi defines a face of the 
polygonal mesh
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Polygonal Mesh
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4

35

• Vertex degree or valence = 
number of incident edges
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Polygonal Mesh
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2

36

• Vertex degree or valence = 
number of incident edges
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Polygonal Mesh
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• Boundary: the set of all 
edges that belong to only 
one polygon 
• Either empty or forms  

closed loops
• If empty, then the 

polygonal mesh is closed
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Triangulation
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• Polygonal mesh where every 
face is a triangle

• Simplifies data structures
• Simplifies rendering
• Simplifies algorithms
• Each face planar and convex
• Any polygon can be 

triangulated
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Triangulation
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• Polygonal mesh where every 
face is a triangle

• Simplifies data structures
• Simplifies rendering
• Simplifies algorithms
• Each face planar and convex
• Any polygon can be 

triangulated
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Triangle Meshes
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• Connectivity: vertices, edges, triangles
• Geometry: vertex positions
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Data Structures
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• What should be stored?
• Geometry: 3D coordinates
• Connectivity

• Adjacency relationships
• Attributes

• Normal, color, texture 
coordinates

• Per vertex, face, edge
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Simple Data Structures: Triangle List
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• STL format (used in CAD)
• Storage

• Face: 3 positions
• 4 bytes per coordinate
• 36 bytes per face

• on average: f = 2v (**euler)
• 72*v bytes for a mesh  

with v vertices
• No connectivity information

Triangles

0 x0 y0 z0

1 x1 x1 z1

2 x2 y2 z2

3 x3 y3 z3

4 x4 y4 z4

5 x5 y5 z5

6 x6 y6 z6

... ... ... ...
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Simple Data Structures:Indexed Face Set
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• Used in formats
•     OBJ, OFF, WRL
• Storage

• Vertex: position
• Face: vertex indices
• 12 bytes per vertex
• 12 bytes per face
• 36*v bytes for the mesh

• No explicit neighborhood info

Vertices

v0 x0 y0 z0

v1 x1 x1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

v5 x5 y5 z5

v6 x6 y6 z6

..

.
..
.

..

.
..
.

Triangles

t0 v0 v1 v2

t1 v0 v1 v3

t2 v2 v4 v3

t3 v5 v2 v6

..

.
..
.

..

.
..
.

queue: halfedge  
datastructure!
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Summary
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Parametric Implicit Discrete/Sampled

  

• Splines, tensor-product 
surfaces 

• Subdivision surfaces
• Distance fields 
• Metaballs/blobs

• Meshes 
• Point set surfaces



CONVERSIONS
Implicit → Mesh
Mesh → Points (next time!)



IMPLICIT → MESH
Marching Cubes
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Extracting the Surface
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• Wish to compute a manifold mesh of the level set
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F(x) > 0 ! 
outside

F(x) = 0 ! 
surface

F(x) < 0 ! 
inside
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Sample the SDF
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Sample the SDF
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Sample the SDF
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Marching Cubes
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Converting from implicit to explicit representations. 

Goal: Given an implicit representation:     

Create a triangle mesh that approximates the surface. 

Lorensen and Cline, SIGGRAPH ‘87

51
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Given a function: 

•                inside 
•           outside

1. Discretize space. 

2. Evaluate       on a grid.

Marching Squares (2D)
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Given a function: 

•                inside 
•           outside
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1. Discretize space. 

2. Evaluate       on a grid. 

3. Classify grid points (+/-) 

4. Classify grid edges  

5. Compute intersections 

6. Connect intersections 

Marching Squares (2D)
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Given a function: 

•                inside 
•           outside

53
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Computing the intersections:

• Edges with a sign switch contain 
intersections. 

• Simplest way to compute t: assume f 
is linear between x1 and x2:

Marching Squares (2D)
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Connecting the intersections:

• Grand principle: treat each cell separately! 
• Enumerate all possible inside/outside combinations.

Marching Squares (2D)
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Connecting the intersections:

• Grand principle: treat each cell separately! 
• Enumerate all possible inside/outside combinations. 
• Group those leading to the same intersections

Marching Squares (2D)
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Connecting the intersections:

• Grand principle: treat each cell separately! 
• Enumerate all possible inside/outside combinations. 
• Group those leading to the same intersections. 
• Group equivalent after rotation. 
• Connect intersections

Marching Squares (2D)
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Connecting the intersections:

Ambiguous cases:

Two options:  
1) Can resolve ambiguity by subsampling inside the cell. 
2) If subsampling is impossible, pick one of the two possibilities.

Marching Squares (2D)
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Same machinery: cells → cubes (voxels), lines → triangles

• 256 different cases - 15 after symmetries, 6 ambiguous cases  
• More subsampling rules → 33 unique cases

Chernyaev, Marching Cubes 33,’95 

the 15 cases

Marching Cubes (3D)
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explore ambiguity to avoid holes!

59
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Marching Cubes (3D)

    Hao Su                                                 Lecture      -5

Main Strengths: 

• Very multi-purpose. 
• Extremely fast and parallelizable. 
• Relatively simple to implement. 
• Virtually parameter-free

Main Weaknesses: 

• Can create badly shaped (skinny) triangles. 
• Many special cases (implemented as big lookup tables). 
• No sharp features.

60
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Recap: Points→Implicit→Mesh
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Next Time: Mesh → Point Cloud!
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Software
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• Libigl http://libigl.github.io/libigl/tutorial/tutorial.html
• MATLAB-style (flat) C++ library, based on indexed face 

set structure
• OpenMesh www.openmesh.org

• Mesh processing, based on half-edge data structure
• CGAL www.cgal.org

• Computational geometry
• MeshLab http://www.meshlab.net/

• Viewing and processing meshes

http://libigl.github.io/libigl/tutorial/tutorial.html
http://www.openmesh.org
http://www.cgal.org
http://www.meshlab.net/
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Software
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• Alec Jacobson’s GP toolbox
• https://github.com/alecjacobson/gptoolbox
• MATLAB, various mesh and matrix routines

• Gabriel Peyre’s Fast Marching Toolbox
• https://www.mathworks.com/matlabcentral/

fileexchange/6110-toolbox-fast-marching
• On-surface distances (more next time!)

• OpenFlipper https://www.openflipper.org/
• Various GP algorithms + Viewer

https://github.com/alecjacobson/gptoolbox
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://www.openflipper.org/


MESH-> POINT CLOUD
Sampling
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From Surface to Point Cloud - Why?
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• Points are simple but expressive! 
• Few points can suffice 

• Flexible, unstructured, few constraints 
• Also: ML applications!

CAD meshes: 
many components 
bad triangles 
connectivity problems
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From Surface to Point Cloud - Why?
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• Points are simple but expressive! 
• Few points can suffice 

• Flexible, unstructured, few constraints 
• Also: ML applications!

the problem: 
sampling the mesh

CAD meshes: 
many components 
bad triangles 
connectivity problems
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Farthest Point Sampling
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• Introduced for progressive transmission/acquisition of images 
• Quality of approximation improves with increasing number of 

samples 
• as opposed eg. to raster scan 

• Key Idea: repeatedly place next sample  in the middle of the 
least-known area of the domain.

Gonzalez 1985, “Clustering to minimize the maximum intercluster distance” 
Hochbaum and Shmoys 1985, “A best possible heuristic for the k-center problem”
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Pipeline
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1.Create an initial sample point set S
• Image corners + additional random point.

2. Find the point which is the farthest from all point in S 
 
 
 
 

3. Insert the point to S and update the distances
4. While more points are needed, iterate
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Farthest Point Sampling
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• Depends on a notion of distance on the sampling 
domain

• Can be made adaptive, via a weighted distance

Eldar et al. 1997, “The Farthest Point Strategy for Progressive Image Sampling”
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FPS on surfaces
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• What’s an appropriate distance?
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On-Surface Distances
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• Geodesics: Straightest and locally shortest curves 

isolines - euclidean

isolines - geodesic
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Discrete Geodesics
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• Recall: a mesh is a graph! 
• Approximate geodesics as paths along edges

Dijkstra’s 
algorithm!
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Dijkstra Geodesics
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l = 2l =
p
2

Can be asymmetric - no matter how fine the mesh!
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Dijkstra Geodesics
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Can be asymmetric - no matter how fine the mesh!
• Dikjstra as front propagation
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Fast Marching Geodesics
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• A better approximation: allow fronts to cross triangles!

Kimmel and Sethian 1997, “Computing Geodesic Paths on Manifolds”
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FPS on a Mesh
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Peyré and Cohen 2003, Geodesic Remeshing Using Front Propagation
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Recap: Conversions
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Geometry Foundations: 
Discrete Differential Geometry 

    Hao Su                                                 Lecture      -5 78

slides credits: , Daniele Panozzo
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Differential Geometry Basics
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• Geometry of manifolds
• Things that can be discovered by local 

observation: point + neighborhood
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Differential Geometry Basics
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• Geometry of manifolds
• Things that can be discovered by local 

observation: point + neighborhood

manifold point
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Differential Geometry Basics
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• Geometry of manifolds
• Things that can be discovered by local 

observation: point + neighborhood

manifold point
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Differential Geometry Basics
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• Geometry of manifolds
• Things that can be discovered by local 

observation: point + neighborhood

manifold point
continuous 
1-1 mapping

can use this mapping 
to calculate things!
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Differential Geometry Basics
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• Geometry of manifolds
• Things that can be discovered by local 

observation: point + neighborhood

manifold point
continuous 
1-1 mapping non-manifold point
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Differential Geometry Basics
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• Geometry of manifolds
• Things that can be discovered by local 

observation: point + neighborhood

manifold point
continuous 
1-1 mapping non-manifold point

x
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Differential Geometry Basics
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• Geometry of manifolds
• Things that can be discovered by local 

observation: point + neighborhood
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Differential Geometry Basics

    Hao Su                                                 Lecture      -5 86

• Geometry of manifolds
• Things that can be discovered by local 

observation: point + neighborhood

continuous 
1-1 mapping
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Differential Geometry Basics
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• Geometry of manifolds
• Things that can be discovered by local 

observation: point + neighborhood

continuous 
1-1 mapping

u

v

If a sufficiently smooth 
mapping can be 
constructed, we can look at 
its first and second 
derivatives

Tangents, normals, 
curvatures, curve 
angles, distances
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Example: Local Distance
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another important example: curvature!

isolines - geodesic



1/23/2018

• 2D:

•          must be continuous

Curves
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len(p(t0),p(t)) =

tZ

0

kp0(t)kdt

t

p(t)
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Secant
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• A line through two points on the curve.
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Secant
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• A line through two points on the curve.
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Tangent
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• The limiting secant as the two points come together.
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Secant and Tangent – Parametric Form
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• Secant: p(t) – p(s) 
• Tangent: p′(t) = (x′(t), y′(t), …)T 
• If t is arc-length:

||p′(t)|| = 1

Recall

len(p(t0),p(t)) =

tZ

0

kp0(t)kdt

curve “geodesic” 



1/23/2018

Circle of Curvature
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• Consider the circle passing through three points on 
the curve…
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Circle of Curvature
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• …the limiting circle as three points come together.
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Tangent, normal, radius of curvature
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p

r

Osculating circle 
“best fitting circle”
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Radius of Curvature, r = 1/κ
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Curvature
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Curvature is scale dependent
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Curvature and Normal

    Hao Su                                                 Lecture      -5 99

• Assuming t is arc-length parameter: 

p(t)

)(ˆ tn

p′(t)

)(ˆ)( tt np κ=ʹ́ normal to the curve
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Discrete Planar Curves
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Tangents, Normals
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• For any point on the edge, the tangent is simply the 
unit vector along the edge and the normal is the 
perpendicular vector
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Tangents, Normals
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• For vertices, we have many options
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Tangents, Normals
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• Can choose to average the adjacent edge normals
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Tangents, Normals
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• Weight by edge lengths
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p1

p2
p3

p4

The Length of a Discrete Curve
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• Sum of edge lengths
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Curvature of a Discrete Curve
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• Curvature is the change in normal direction as we 
travel along the curve

no change along each edge –  
curvature is zero along edges
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Curvature of a Discrete Curve

    Hao Su                                                 Lecture      -5 107

• Curvature is the change in normal direction as we 
travel along the curve

normal changes at vertices –  
record the turning angle!
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Curvature of a Discrete Curve
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• Curvature is the change in normal direction as we 
travel along the curve

normal changes at vertices –  
record the turning angle!
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Curvature of a Discrete Curve
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• Curvature is the change in normal direction as we 
travel along the curve

same as the turning angle 
between the edges
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Curvature of a Discrete Curve
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• Zero along the edges
• Turning angle at the vertices 

= the change in normal direction

α1, α2 > 0,   α3 < 0 

α1 α2

α3


