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What's going on inside ConvNets?
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What are the intermediate features looking for?

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.
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First Layer: Visualize Filters S
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ResNet-101: DenseNet-121:
64x3X7x7 64 X3 x7Xx7 64 X3 x7x7

T
AlexNet:
64 x3x 11 x 11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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Last

Hao Su

Layer

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the
feature vectors

Lecture 3 - 5

FC7 layer
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Last Layer: Nearest Neighbors e i vector
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Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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Last Layer: Dimensionality Reduction
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Visualize the “space” of FC7

3
13

1

feature vectors by reducing ‘9‘5’?"1‘.?7" e
dimensionality of vectors from L 2 L )
4096 to 2 dimensions 5 'J'r,& ,‘,{f/, = =
Simple algorithm: Principle O /1 il
Component Analysis (PCA) “;\j’\*‘("w‘;fﬁé}' W r””

More complex: t-SNE

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Fiqure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.
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Visualizing Activations

conv5 feature map is
128x13x13; visualize
as 128 13x13
grayscale images

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.
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Maximally Activating Patches

Pick a layer and a channel; e.g. conv5 is
128 x 13 x 13, pick channel 17/128

Run many images through the network,
record values of chosen channel

Visualize image patches that correspond
to maximal activations
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Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;

reproduced with permission.
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Saliency Maps

How to tell which pixels matter for classification?

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

[Stanford CS231n]
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Saliency Maps

How to tell which pixels matter for classification?

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Intermediate Features via (guided) backprop
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Compute gradient of neuron value with respect
to image pixels

Pick a single intermediate neuron, e.g. one
value in 128 x 13 x 13 conv5 feature map

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
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Visualizing CNN features: Gradient Ascent

(Guided) backprop: Gradient ascent:
Find the part of an Generate a synthetic
image that a neuron image that maximally
responds to activates a neuron

[* = arg max |f(I)| +|R(I)

_— \

Neuron value Natural image regularizer
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Visualizing CNN features: Gradient Ascent

arg max[S, (D]~ A| 1|3

score for class c (before Softmax)

1. Initialize image to zeros

zero image S

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels

4. Make a small update to the image
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Visualizing CNN features: Gradient Ascent

arg max S, () ~[N[]3

Simple regularizer: Penalize L2
norm of generated image

washing machine computer keyboard kit fox

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014. goose limousine
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014.

Reproduced with permission.

[Stanford CS231n]
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Network Visualization

o Still an open area!

* For only for eyes, but to induce useful characteristics
for network diagnosis
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Fooling Images / Adversarial Examples

(1) Start from an arbitrary image

(2) Pick an arbitrary class

(3) Modify the image to maximize the class
(4) Repeat until network is fooled
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Fooling Images / Adversarial Examples

African elephant koala Difference 10x Difference

iPod Difference 10x Difference

[Stanford CS231n]
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Agenda

 Network Visualization
« Batch Normalization and Matrix Calculus
» Optimization for Networks

* Theories behind Network Generalizability
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Batch Normalization

Algorithm 2 Batch normalization [loffe and Szegedy, 2015]

Input: Values of = over minibatch z; ... x5, where x is a certain
channel in a certain feature vector
Output: Normalized, scaled and shifted values y; ... yp

B
10 = % D b1 Tb
B
2: 0% = 5 Yoy (wp — )
3. 2 — LTp—H
. b /—2+€
4: yp = vy + B

@ Accelerates training and makes initialization less sensitive
@ Zero mean and unit variance feature vectors
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Calculus Example

* A simple example:
y=WWWx

1x100 100x100 100x10 10
M,ER ) VIGER 9 VI/IER ’ XER ,")C"zl

All elements sampled i.i.d from N(0,1)

9y _, 9 _, 9y _,
ow, ow, o,
Hint: tr(ABC)=tr(CAB) = tr(BCA)
VatrAB = B

Hao Su Lecture 3 - 22



Calculus Example

* A simple example:
y=WWWx

1x100 100x100 100x10 10
M,ER ) VIGER 9 VI/IER ’ XER ,")C"zl

All elements sampled i.i.d from N(0,1)

LA @, W _,
T W, T

Elw k=2 Elw k=2 Elwl=2

Hint: Var(X +Y)= Var(X)+ Var(Y)
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Calculus Example

* A simple example:
y=WWWx
MERIxIOO, W ERIOOXIOO, WERIOOXIO, XERIO,"X"zl

2 1

All elements sampled i.i.d from N(0,1)

LA @, W _,
w, w, ow,

2 2 2
Blw R=2 Blw,P=2 EIW,R=?
Let y1:VV1x9 y2=W2W1x
Bly E<?  BlyP<?  BlylP<?  Hine 14lL<) AL
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Why Batch Normalization is Effective?

* A simple example:
y=Ws W5 Ws,x

100x100 100x10
w,eR™™, W, eR™ W eR™", xeR"lIxl=1

All elements sampled i.i.d from N(0,1)

A 9V _, 9V _,
ow ow. ow.

1 2 3
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Why Batch Normalization is Effective?

* A simple example:
y=Ws W5 Ws,x

1x100 100100 100x10 10
w,eR™™, W, eR , WeR™P, xeR" |xl=1

All elements sampled i.i.d from N(0,1)

9y _, 9 _, 9y _,
oW, ow, o,
Update rule: A =w +nVEW)

n :step size, e.g., stage-wise constant
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Agenda

 Network Visualization
 Matrix Calculus and Batch Normalization
« Optimization for Networks

* Theories behind Network Generalizability
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Reminder: The error surface for a linear neuron

\

 The error surface lies in a space with a
horizontal axis for each weight and one vertical f
axis for the error. E

— For a linear neuron with a squared error, it is
a quadratic bowl.

— Vertical cross-sections are parabolas.

— Horizontal cross-sections are ellipses.

* For multi-layer, non-linear nets the error surface .
. . w
is much more complicated.

— But locally, a piece of a quadratic bowl is
usually a very good approximation.

w2
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Convergence speed of full batch learning when the error
surface is a quadratic bowl

* Going downhill reduces the error, but the
direction of steepest descent does not point
at the minimum unless the ellipse is a circle.

— The gradient is big in the direction in
which we only want to travel a small
distance.

Even for non-linear
multi-layer nets, the
error surface is locally
quadratic, so the same
speed issues apply.

— The gradient is small in the direction in
which we want to travel a large distance.
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How the learning goes wrong

* |f the learning rate is big, the weights slosh to
and fro across the ravine.

— If the learning rate is too big, this
oscillation diverges.

e What we would like to achieve:

— Move quickly in directions with small but
consistent gradients.
lecture_slides_lec6.pdf

— Move slowly in directions with big but " R
inconsistent gradients.

T
E
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Stochastic gradient descent

* |f the dataset is highly redundant, the * Mini-batches are usually better

gradient on the first half is almost than online.
Liecgggall,l;ﬂcthe gradient on the — Less computation is used
o . updating the weights.

— So instead of computing the full , _
gradient, update the weights using — Computing the gradient for
the gradient on the first half and many cases simultaneously
then get a gradient for the new uses matrix-matrix
weights on the second half. multiplies which are very

— The extreme version of this efficient, especially on GPUs
approach updates weights after «  Mini-batches need to be

«“ H ”
each case. Its called “online”. balanced for classes
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Momentum Method

The intuition behind the momentum method

Imagine a ball on the error surface. The
location of the ball in the horizontal
plane represents the weight vector.

— The ball starts off by following the
gradient, but once it has velocity,
it no longer does steepest descent.

— Its momentum makes it keep
going in the previous direction.

It damps oscillations in directions of
high curvature by combining
gradients with opposite signs.

It builds up speed in directio
a gentle but consistent [
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Momentum Method

The effect of the gradient is to
v(t)=a v(t-1)- gﬁ(l‘) P increment the previous velocity. The
w velocity also decays by a which is
slightly less then 1.

Aw(t) =v(t) <€ The weight change is equal to the current

velocity.
oE
=av(t-1)—-e—(t)
oW , :
The weight change can be expressed in

=a Aw(t-1)- gE(t) & terms of the previous weight change and
oW the current gradient.
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Momentum Method

> E&

Image 2: SGD without momentum Image 3: SGD with momentum

It leads to faster and stable convergence.

Reduced Oscillations
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http://ruder.io/optimizing-gradient-descent/index.html#fn:15

ADAM: An Improved Moment Method

First order and second order moment estimation
m, = lBlmt—l +(1- 181)&
2
v, = levt—l +(1- 182 )gt

Bias correction g o=
t l_ﬁlt
. v
v, =——
1-8;
Adam update rule: 6. =6 ——1— i
am update rule: =6, -,
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Learning Curve

trn. loss
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[UToronto CSC321]



Agenda

 Network Visualization
 Matrix Calculus and Batch Normalization
» Optimization for Networks

- Analysis behind Network Generalizability
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Model Selection

—TKA\H\/H\/C:,

Overfitting

—

| KXo MoveL ComplexiTy
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3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128

[ 3x3 conv, 128 3x3 conv, 128
e e e : | I n I n 3x3 conv, 128 3x3 convy, 128
3x3 conv, 256, /2 3x3 conv, 256, /2 .-'\
Y
3x3 conv, 256 3x3 conv, 256 ey

3x3 conv, 256 3x3 conv, 256

3x3 conv, 256 3x3 conv, 256
. C3:f. maps 16@10x10
INPUT %2'?&“;3‘9 maps S4:1. maps 16@5x5 3x3 conv, 256 3x3 conv, 256
3232 S2:f. maps
6@14x14

3x3 conv, 256
3x3 conv, 256
3x3 conv, 256

| 3x3 conv, 256
Full conAection | Gaussian connections

Convolutions Subsampling Corvolutions  Subsampling Full connection 3x3 conv, 256 3x3 conv, 256

3x3 conv, 256 3x3 conv, 256

3x3 conv, 256 3x3 conv, 256
3x3 cony, 128, /2 3X3conv, 128,72 | ..
Y
3x3 conv, 128 3x3 conv, 128

3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128

3x3 convy, 128 3x3 conv, 128
3x3 cony, 512, /2 3x3 cony, 512, /2 -N“.
Yy
3x3 conv, 512 3x3 conv, 512 e

i o i 3 J . . . 3x3 conv, 512 3x3 conv, 512
3x3 conv, 512 3x3 convy, 512
3x3 conv, 512 3x3 conv, 512

' . 3x3 conv, 512 3x3 conv, 512
Convolution
AvgPool avg pool avg pool

MaxPool
@9 Concat
@» Dropout fc 1000 fc 1000

@ Fully connected
@ Softmax

;
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Bias — Variance
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X: ModeL CopplexiT

Deep
Learning

*



Parameter Count
Num Training Samples

Inception

p/n: 33 Wide Resnet

p/n: 179

Alexnet
p/n: 28

p/n: 24

50

test error

37.5 [Chiyuan Zhang, ICLR’17]
25

12.5

MLP 1x512 Alexnet Inception Wide Resnet



Random Label Dataset

Dog Cat

Flower . Dog
Cat B Bus
Flower B Bird




Randomization Test

[Chiyuan Zhang, ICLR’17]

B Train Accuracy Bl TestAccuracy
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100

75 -

50 -

25 -

Randomization Test

[Chiyuan Zhang, ICLR’17]

Bl Train Accuracy Bl Test Accuracy

| [ | Generalization Gap

‘HHHI‘IH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

No Label Noise Ratio of Random Label Noise Full Label Noise



Randomization Test

* Deep Neural Networks Easily fit random labels

8 1
Deep Neural Networks easily fit random
labels.

L J




Regularizers in Deep Learning

- Data augmentation: domain-specific transformations

* Weight decay: |12-regularizer on weights

* Dropout™ randomly mask out responses

R R AR LR

;"'-3'%‘:-;;,?&?. f.%"“ b
'\_.'1.', B [ -y - ‘. T
Ry ﬁfrfv:} /




Fitting Random Label with
Regularizers

[Chiyuan Zhang, ICLR’17]

=EE" - MAN=Z-

dlhﬂ!liﬂ'l

IMAGE

Regularizer

Weight decay

Crop Augmentation*

Regularizer

NET

Dropout + Weight decay

e need to tune the hyperparams a bit and run

Inception

Alexnet
MLP Ix512

Inception

Inception V3

for

Training Accuracy

100%
Failed to converge
99.21%

99.93%

Training top-5

96.15%

97.95%

more epochs for this to converge, see paper for details.



Implicit Regularization
0«ny+Hin9,_

A QEC\MLARIZEK [ Wﬂ) that
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data — hurt the tm"”i“j Process.




Next Class

* The optimization algorithm and landscape of the
loss function have to be taken into consideration

« Sketch of some latest theoretical investigation into
deep learning
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