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Alignment and 
Registration of Data Sets
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Mapping Between Data Sets
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• Multiscale 
mappings 
• Point/pixel level 
• part level

Maps capture what 
is the same or similar  
across two data sets



Why Do We Care About Maps and 
Alignments?

• To stitch data together 

• To transfer information 

• To compute distances and 
similarities 

• To perform joint analysis
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Extrinsic vs. Intrinsic Alignment

• Coordinate root mean squared distance 

• Distance root mean squared distance

5

metric space, intrinsic alignment

Gromov-Hausdorff distances

estimate transform

estimate correspondences



Graph Isomorphism

6Intrinsic alignment of manifolds



Why Intrinsic?

Many shapes have natural 
deformations and articulations 
that do not change the nature 
of the shape. 

But they change its embedding 
3D space.



Why Intrinsic?

Normal distances can change 
drastically under such deformations 

A descriptor based on Euclidean 
distance histograms, like D2, 
would fail



Geodesic / Intrinsic Distances

Near isometric deformations 
are common for both organic 
and man-made shapes 

Intrinsic distances are 
invariant to isometric 
deformations

No stretching, shrinking, or tearing

geodesic = intrinsic

isometry = length-preserving transform



Geodesic / Intrinsic Distances

Ruggeri et al. 2008

We can use geodesic 
distance histograms



Geodesic / Intrinsic Distances

Ruggeri et al. 2008



What About Local Intrinsic Descriptors?
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• Isometrically invariant features 
• Curvature 
• Geodesic Distance 
• Histogram of Geodesic Distances (similar to D2) 
• Global Point Signature 
• Heat Kernel Signature 
• Wave Kernel Signature



Gaussian Curvature



Gaussian Curvature

Problems



Gaussian Curvature

Problems

Solomon



Spectral Intrinsic 
Signatures
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Laplace-Beltrami Operator

• Analog of Fourier transform on the sphere, but now on a 
general 2D manifold 

• LB is an operators that can be applied to functions on 
manifolds to yield other functions
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LB Eigen-decomposition

• The Laplace-Beltrami operator      has an 
eigendecomposition
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Multiscale Basis for a Function Space
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Global Point Signature

Rustamov et al. 2007

?
INTRINSIC SIMILARITY



Global Point Signature

Rustamov et al. 2007
Diffusion distances are also intrinsic 
and also canonical

almost invariant under isometries – but not completely canonical



Global Point Signature

Similar to D2, but use histograms in embedded space 
(rather than Euclidean) Rustamov et al. 2007



Global Point Signature

• Pros 
• Isometry-invariant 
• Global (each point feature depends on entire shape) 

• Cons 
• Eigenfunctions may flip sign 
• Eigenfunctions might change positions due to 

deformations 
• Only global

Rustamov et al. 2007



Back to Heat Diffusion

24

• Heat diffusion on a Riemannian manifold: 
• If              is the amount of heat at point    at time   , 

then 

•          Laplace-Beltrami Operator (div grad) 

• Given an initial distribution        . After time   :   

heat operator



The Heat Kernel
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Heat kernel                : 

                    : amount of heat transferred from     to     in 
time   .  How well     and    are connected at scale        



Background
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• Heat Kernel               . Also the probability density 
function of Brownian motion on      : 

• Intuitively: weighted average over all paths possible 
between    and    in time     

• Related to Diffusion Distance: 

•  a robust multi-scale measure 
•  of proximity 

Coifman, Lafon



Heat Kernel Properties

•   

•   

•  
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Basic Properties

Eigenfunctions of LB



Heat Kernel Properties
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Invariant under isometric deformations 
  If                        is an isometry, then:  

Conversely: it characterizes the shape up to isometry. 
  If                   then: 
    is an isometry.  

This is because: 

where                 is the geodesic distance



Heat Kernel Properties
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Multiscale: 
    For a fixed    , as    increases, heat diffuses to larger 

and larger neighborhoods 

 Therefore,             is determined by (reflects the 
properties of) a neighborhood that grows with     



Heat Kernel Properties
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Robustness: 
           is the probability density function of BM, a 

weighted average over all paths, which is generally 
not very sensitive to local perturbations  



Heat Kernel Properties
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Robustness: 
           is the probability density function of BM, a 

weighted average over all paths, which is generally 
not very sensitive to local perturbations 

Only paths through the modified area     will change 



Defining a Signature
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Let               be the signature of      at scale     
    The heat kernel has all the properties we want Except 

easy comparison … 

             is a function on the entire manifold 
Nontrivial to align the domains of such functions across different shapes, or 
even for different points of the same shape 



The Heat Kernel Signature
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Let               be the signature of      at scale     
    The heat kernel has all the properties we want. 

Except easy comparison … 

We define the Heat Kernel Signature (HKS), by 
restricting to the diagonal: 

Now HKSs of two points can be easily compared since 
they are defined on a common domain (time)  

[Sun, Ovsjanikov, G., 2009]



Defining a Signature
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Since HKS is a restriction of the heat kernel, it is: 
Robust 
Multiscale 

Question: How informative is it? 
Related to Gaussian curvature for small   : 



Defining a Signature
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HKS can be interpreted as a multiscale, robust, intrinsic 
curvature: 



Informative Theorem

36

The set of all HKSs on a shape almost always defines it 
up to isometry!  

Theorem: If      and     are two compact  manifolds, such 
that          and          have only non-repeating eigenvalues, 
then a homeomorphism                       is an isometry         
if and only if, for all  

The set of all HKSs characterizes the intrinsic structure of 
the manifold 

x



Informative Theorem
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Intuition: Heat kernel is related to the eigenvalues  and 
eigenfunctions of the LB-operator: 

If eigenvalues do not repeat, we can recover           and                   
  from                  .  E.g.    

 and  



Informative Theorem
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Nodal domains of the eigenfunctions of LB: domains that 
are delimited by the zeroes of an eigenfunction 

Key property: 
they are sign 
interleaved: 

No two domains of 
the same sign can 
border each other
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Note that any mapping that preserves squared values must map 
a nodal domain to another. Moreover, by fixing a sign of one 
point, the signs of all other points are fixed by continuity

- +
- +



Informative Theorem
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Intuition: Heat Kernel is related to the eigenvalues  and 
eigenfunctions of the LB-operator: 

After recovering the eigenvalues, and squared eigen-
functions, we know that              

We use the properties of nodal domains of eigen-
functions to show:       or         

Since the eigenvalues + eigenfunctions define the 
manifold, the theorem follows



Informative Theorem
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How general is the theorem? 

If there are repeated eigenvalues, it does not hold: 

On the sphere,              but 
there are non-isometric maps between spheres. 

Uhlenbeck’s Theorem (1976): for “almost any” metric on a 
2-manifold     , the eigenvalues of  are non-repeating 



Informative Property
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Conclusion:  
HKS is informative for individual points  
And, as a set, for the entire shape  

Can be used both for multiscale point matching 
and for shape comparison 



Applications
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Multi-scale matching with HKS, structure discovery 

Shape comparison 

Shape retrieval using HKS 

Spectral version of Gromov-Hausdorff 



Multiscale Matching
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Comparing points through their HKS signatures: 

 



Multiscale Matching
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Comparing points through their HKS signatures: 

 
Medium scale Full scale



Multiscale Matching
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Finding similar points – robustly: 

 Medium scale Full scale



Multiscale Matching
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Finding similar points across multiple shapes: 

 Medium scale Full scale



The End
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