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_Alignment and
Registration of Data Sets



Mapping Between Data Sets

e Multiscale
mappings
e Point/pixel level
e part level

- aps capture what
IS the same or similar
across two data sets




Why Do We Care About Maps and

Alignments?

e To stitch data together

e To transfer information

e To compute distances and

similarities

e To perform joint analysis




Extrinsic vs. Intrinsic Alignment

e Coordinate root mean squared distance
cRMS?(P,Q) = mln— Z IRp; +t — q;||?
Rt n i—1
estimate transform

 Distance root mean squared distance

1
2
ARMS2(P, Q) = 5 min 3 3 (IIpi-pj~ sy ~lo ])?
1=19=1
estimate correspondences

metric space, intrinsic alignment

Gromov-Hausdorff distances



Graph Isomorphism
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Why Intrinsic?

Many shapes have natural
deformations and articulations
that do not change the nature
of the shape.

But they change its embedding
3D space.




Why Intrinsic?

Normal distances can change
drastically under such deformations

A descriptor based on Euclidean
~distance histograms, like D2,
- would fail




Geodesic / Intrinsic Distances

Near isometric deformations
are common for both organic
and man-made shapes

Intrinsic distances are
invariant to isometric
deformations

M,

geodesic = intrinsic

Moy ™ _—

isometry = length-preserving transform No stretching, shrinking, or tearing



Geodesic / Intrinsic Distances

We can use geodesic
distance histograms

Row 1 M
Row 2 tC.:ﬂ-.;
Row 3
Rowi 4 flof ,
Row N

> owN 4 o,

Sampling Computing geodesic ~ Normalized geodesic Set of histograms
distances distance matrix
r—j

Ruggeri et al. 2008



Geodesic / Intrinsic Distances
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What About Local Intrinsic Descriptors?

e Isometrically invariant features

e Curvature

» Geodesic Distance
 Histogram of Geodesic Distances (similar to D2)
» Global Point Signature ofl:l::ceispal

e Heat Kernel Signature  curvatures ~
« Wave Kernel Signature

normal
vector

tangent
plane
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Gaussian Curvature

Theorema Egregium
(“Remarkable Theorem"):

Gaussian curvature
IS Intrinsic.

K = K1 K2



Gaussian Curvature

Problems

K = K1K9



Gaussian Curvature

Problems

hatpuiwaw.integrityware.comyimages) desGaussianCurvature. pg

Solomon



Spectral Intrinsic
Signatures
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Laplace-Beltrami Operator

e Analog of Fourier transform on the sphere, but now on a
general 2D manifold

e LB is an operators that can be applied to functions on
manifolds to yield other functions

A C®(M) — C®(M),Af =div Vf

divV f

OF _ xp_ 1
E—Af—def
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LB Eigen-decomposition

e The Laplace-Beltrami operator A has an
eigendecomposition

Ag; = N\¢;




Multiscale Basis for a Function Space

f:M—R
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Global Point Signature

6PS() = (= 410), =620), S=6a0), )

INTRINSIC SIMILARITY

Rustamov et al. 2007



Global Point Signature

almost invariant under isometries — but not completely canonical

GPS(p) = ( \/rqbl(p) -\T%(P) \/A_ ¢3(p), - )
p(x1)

L1

m) <
p(z2) 7 '

’ o

Diffusion distances are also intrinsic
and also canonical Rustamov et al. 2007



Global Point Signature

GPS(p) = ( =t1(p), S=ba(p), =)
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Figure 4: Armadillo and its deformations.

Similar to D2, but use histograms in embedded space
(rather than Euclidean) Rustamov et al. 2007



Global Point Signature

1 1 1

¢x¢mmgjzﬁxmf——¢ﬂmf~)

cps(e) = (

e Pros
e |sometry-invariant
e Global (each point feature depends on entire shape)

e Cons

e Eigenfunctions may flip sign

e Eigenfunctions might change positions due to
deformations

e Only global

Rustamov et al. 2007



Back to Heat Diffusion

* Heat diffusion on a Riemannian manifold:
* Ifu(x,t) is the amount of heat at pointz at timet.

then
o
U _ Au
Ot

* A\ - Laplace-Beltrami Operator (div grad)

* Given an initial distribution ¢(yAfter time 3

fla,t) =eOf

H t heat operator
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The Heat Kernel

QHeat kernel ki (x,y) :

fot) = [ ke(w,p)f(y)dy

M
ki(x,y) - amount of heat transferred from x to¥y in
time %/ How well * and Y are connected at scale ¢

ey

t = 0.001 t =0.02 t=



Background

e Heat Kernel k;:(x,y). Also the probability density
function of Brownian motion on M:

P (W; c C’) = /O ki(x,y)dy

e Intuitively: weighted average over all paths possible
between Tandy in timet

e Related to Diffusion Distance:

Dt(ﬂ?, y) — kt(ib’, CIZ) — th(.’ﬁ, y) + kt(ya y)
e a robust multi-scale measure

[ ° ool s ”\
o of proximity ] ETSe Bol
L by e it v':fi.’ iy

Coifman, Lafon
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Heat Kernel Properties

Basic Properties
ki(z,y) = ki(y, x)

©kips(@,y) = [ ki@, 2ks(zy)dz
* ki(z,y) = Ze_/\itﬁbi(ﬂﬁ)ﬁbi(y)

=0 Eigenfunctions of LB
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Heat Kernel Properties

@Invariant under isometric deformations
If T - X — Y is anisometry, then:

Q@ Conversely: it characterizes the shape up to isometry.

Thi(X,Y) = ke (T(2), T(y)) ¥ z,y,then
T IS an isometry.

This is because:

1

lim (tlog k = ¢~ %
th( g t(ﬂ?,y)) A ./\/l(x7y) L,y

where dag(-,-) Is the geodesic distance

28



Heat Kernel Properties

QMultiscale:

For a fixed i, as t increases, heat diffuses to larger
and larger neighborhoods

Therefore, g, (5, .) is determined by (reflects the
properties ofﬁ a neighborhood that grows with
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Heat Kernel Properties

@Robustness:

k+(x, ) is the probability density function of BM, a
weighted average over all paths, which is generally
not very sensitive to local perturbations

M

kM (z,C) =P(WL e C)

30



Heat Kernel Properties

@Robustness:

k+(x, ) is the probability density function of BM, a
weighted average over all paths, which is generally
not very sensitive to local perturbations

~

M

kM (2, 0) = P(WE € O)

Only paths through the modified area p will change

31



Defining a Signature

Q@Let k;(z,-) be the signature of x at scale ¢

The heat kernel has all the properties we want Except
easy comparison ...

Q@ k:(x,-)is a function on the entire manifold

@ Nontrivial to align the domains of such functions across different shapes, or
even for different points of the same shape
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The Heat Kernel Signature

Q@Let k;(x, ) be the signature of x at scale ¢

The heat kernel has all the properties we want.
Except easy comparison ...

QWe define the Heat Kernel Signature (HKS), by
restricting to the diagonal:

HKS(z) = {ki(z,z),t € RT}

Q@Now HKSs of two points can be easily compared since
they are defined on a common domain (time)

[Sun, Ovsjanikov, G., 2009]
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Defining a Signature

@Since HKS is a restriction of the heat kernel, it is:
QRobust
QMultiscale

QQuestion: How informative is it?

QRelated to Gaussian curvature for small ¢:
ki(x,x) = 1 iati 1 1K
, = — ; ap = 1l,a1 = —
t At s 1 0 1 6

/ A\

%)
A
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Defining a Signature

Q@HKS can be interpreted as a multiscale, robust, intrinsic
curvature:

@0Le

t =0.004 t =0.008 t =0.02 t =2
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Informative Theorem

@ The set of all HKSs on a shape almost always defines it
up to isometry!

@ TTheorem: If X and yare two compact manifolds, such
that A . and Ay have only non-repeating eigenvalues,
then a homeomorphism 7 - y _, y Is an isometry
if and only if, for all y

HKS(z) = HKS(T(z))

@ The set of all HKSs characterizes the intrinsic structure of
the manifold
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Informative Theorem

@ Intuition: Heat kernel is related to the eigenvalues and
eigenfunctions of the LB-operator:

HKS(2,0) = 3 e 162 (x)
1=0

QIf eigenvalues do not repeat, we can recover {2} and

{qbzz(ac)} from HKS(z): E.g. Ao =0
2 T

63(2) = lim HKS (2,1

and inf{a S.t.lim e (HKS (. 1) = 9§(x)) # o}

37



Informative Theorem

@Nodal domains of the eigenfunctions of LB: domains that
are delimited by the zeroes of an eigenfunction

Key property:
they are sign
interleaved:

No two domains of
the same sign can
border each other

Note that any mapping that preserves squared values must map
a nodal domain to another. Moreover, by fixing a sign of one
point, the signs of all other points are fixed by continuity 38



Informative Theorem

@ Intuition: Heat Kernel is related to the eigenvalues and
eigenfunctions of the LB-operator:

HKS(2,0) = 3 e 162 (x)
1=0

QAfter recovering the eigenvalues, and squared eigen-
functions, we know that ¢3/(T(x))‘ _ ¢g<(x)‘

Q@ We use the properties of nodal domains of eigen-
functions 1o ShOW: v (7,y) = X (@) " ¢} (7)) = —6¥ ()

@ Since the eigenvalues + eigenfunctions define the
manifold, the theorem follows
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Informative Theorem

Q@How general is the theorem?

Q|f there are repeated eigenvalues, it does not hold:

W
On the sphere, HKS(z) = HKS(y) V z,y but
there are non-isometric maps between spheres

Q@Uhlenbeck’'s Theorem (1976): for “almost any” metric on a

2-manifold X the eigenvalues of are non-repeating
Ax

40



Informative Property

@ Conclusion:
Q@HKS is informative for individual points
QANd, as a set, for the entire shape

Can be used both for multiscale point matching
and for shape comparison

HKS(z) = {ki(z,z),t € RT)}
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Applications

@Multi-scale matching with HKS, structure discovery

@Shape comparison
@Shape retrieval using HKS

@Spectral version of Gromov-Hausdorff
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Multiscale Matching

@ Comparing points through their HKS signatures:

| scaled HKS

= - T T T N
— T T — T T T
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Multiscale Matching

@ Comparing points through their HKS signatures:

Medium scale Full scale
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Multiscale Matching

QFinding similar points — robustly:
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Multiscale Matching

@Finding similar points across multiple shapes:

Medium scale Full scale
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The End
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