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Key Challenge
• A 3D shape representation for efficient CNN on GPU 
• 2D Regular grid • Irregular 3D shape

Image Mesh
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The sparsity characteristic of 3D data
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Full Voxel based Solutions

•  



Key Idea

• Store the sparse surface signals 
• Constrain the computation near the surface



Solution: Octree based CNN (O-CNN)
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Convolution on Octree

OCTREEFullVoxel



Convolution on Octree

• Neighborhood searching: Hash table

OCTREEFullVoxel



Pooling on Octree

OCTREEFullVoxel



Pooling on Octree

OCTREEFullVoxel



Other CNN Operations on Octree

• Convolution with stride > 1 

• Deconvolution and un-pooling 
• Inverse operations of convolution and pooling 

• Support most CNN architectures for images 
• LeNet [Lecun et al. 1998], GoogLeNet [Szegedy et al. 2015], 
ResNet [He et al. 2016], DeconvNet [Noh et al . 2015], FCN 
[Long et al. 2015] … 



• Shape classification and 
retrieval 

• LeNet [Lecun et al. 1998]

• Shape segmentation 
• DeconvNet [Noh et al . 2015] + 
DenseCRF [Krähenbühl and 
Koltun2011]

O-CNN for Shape Analysis



• O-CNN vs. full voxel CNN  
• Geforce 1080 GPU (8GB); Batch size 32

Efficiency of O-CNN

O-CNN

Voxel CNN
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Results – Classification 
• Task: recognize the shape category 
• Dataset: Princeton ModelNet40,  

   12311 3D models, 40 categories 
• Evaluation metric: classification accuracy

 

 

Classification
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Results – Shape Retrieval 

• Task: Given a query shape, retrieve similar shapes from the database  
• Dataset: ShapeNet55 Core, 51190 3D models, 55 categories 
• Evalution metric: precision, recall, mAP, F-score, and NDCG

Retrieval



Results – Segmentation 
• Task: Segment a 3D shape into semantic parts 
• Dataset: dataset from [Yi et al. 2016], 16881 models, 2~6 parts 
• Evaluation metric: Intersection over Union

Segmentation



Conclusion
• Key idea 

• Store sparse surface signal 
• Constrain the computation near surface 

• Octree based 3D CNNs 
• General, efficient, and effective

Code and data online 
http://wang-ps.github.io/O-CNN
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Fig. 1. Images showing eight dolphins out of 32, from which we build an 8-parameter morphable model. Top: input images with silhouette
annotations. Middle: The rigid dolphin prototype in initial position for our optimization, showing user-provided point constraints (blue), each of
which corresponds to a point in the image (shown in red). Bottom: final morphable model reconstruction overlaid on the input images.

indicate the potential for ‘linear object classes’ to
describe a variety of complex phenomena. Applied to
modelling of the human head from 3D scans, Blanz
and Vetter [1] demonstrate the enormous power of 3D
morphable models fitted to 2D images; extended to
modelling of the whole body, the range of applications
continues to widen [5]. Chen et al. [13] learn separate
pose and shape models for sharks as well as humans,
and demonstrate good reconstructions by fitting these
models to a single silhouette. However, in all of these
cases, 3D models are built starting from 3D data, while
we wish to recover 3D shape from 2D images.

1.1.1 Single-view reconstruction

The recovery of 3D from 2D is a subject with a long
history. The first class of related techniques comprises
those which recover a 3D model from a single 2D
image. Terzopolous et al. [14] show how generalized
cylinders can be fitted to image silhouettes using an
iterative approach which may be viewed as energy
minimization. Gingold et al. [15] combine generalized
cylinders with user-provided semantic annotations
to create smooth models from 2D sketches. Using
simple image-based rules, Igarashi et al. [16] generate a
variety of impressive 3D models in the TEDDY system.
Karpenko and Hughes [17] allow more topologies in
SMOOTHSKETCH and deal with invisible cusps and
incomplete silhouettes. Prasad et al. [10] show how
geometry images [18] allow complex topologies to
be recovered using a globally-convergent quadratic
energy minimization. The FiberMesh system [19] uni-
fies several existing constraint sources in an energy
minimization framework to provide a comprehensive
interactive system for 3D model construction from
curves.

Our approach may be seen as a generalization of
this type of system to morphable models rather than a
single 3D model. However, although previous systems

could use a fixed assignment of the contour generator’s
preimage in surface parameter space with little effect
on the final model, this approach is inadequate for the
morphable model case. Kraevoy et al. [20] find contour
generator preimages using a dynamic programming
approach similar to the discrete optimization we
propose in §5.2. They do not combine this with a
continuous representation, however, and their focus is
fitting a single 3D mesh to a single sketched contour.

If we consider how these approaches might be
adapted to the problem we address in this paper, one
might imagine performing a single-view reconstruction
for each of our input images and then applying
existing morphable model fitting methods. However,
this approach would ignore the shape information
available from multiple viewpoints represented across
the images, depending heavily on the surface smooth-
ness priors used in each reconstruction, as well as
requiring considerably more effort than our proposal.

1.1.2 Rigid reconstruction from multiple views

A second school of 3D recovery uses the information
available in multiple images of a single rigid 3D object
or scene. For textured objects, very effective systems
exist based on interest point detection and matching.
For example, Photo tourism [6] shows that 3D models
can be built from internet-sourced images. However,
our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
untextured (e.g. many animals); second, even textured
object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
individual.

The key prior work in rigid reconstruction is there-
fore systems which recover shape and motion from
contours, and in particular from the object’s occluding
contour or silhouette. With known camera motion,
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Fig. 1. Images showing eight dolphins out of 32, from which we build an 8-parameter morphable model. Top: input images with silhouette
annotations. Middle: The rigid dolphin prototype in initial position for our optimization, showing user-provided point constraints (blue), each of
which corresponds to a point in the image (shown in red). Bottom: final morphable model reconstruction overlaid on the input images.

indicate the potential for ‘linear object classes’ to
describe a variety of complex phenomena. Applied to
modelling of the human head from 3D scans, Blanz
and Vetter [1] demonstrate the enormous power of 3D
morphable models fitted to 2D images; extended to
modelling of the whole body, the range of applications
continues to widen [5]. Chen et al. [13] learn separate
pose and shape models for sharks as well as humans,
and demonstrate good reconstructions by fitting these
models to a single silhouette. However, in all of these
cases, 3D models are built starting from 3D data, while
we wish to recover 3D shape from 2D images.

1.1.1 Single-view reconstruction

The recovery of 3D from 2D is a subject with a long
history. The first class of related techniques comprises
those which recover a 3D model from a single 2D
image. Terzopolous et al. [14] show how generalized
cylinders can be fitted to image silhouettes using an
iterative approach which may be viewed as energy
minimization. Gingold et al. [15] combine generalized
cylinders with user-provided semantic annotations
to create smooth models from 2D sketches. Using
simple image-based rules, Igarashi et al. [16] generate a
variety of impressive 3D models in the TEDDY system.
Karpenko and Hughes [17] allow more topologies in
SMOOTHSKETCH and deal with invisible cusps and
incomplete silhouettes. Prasad et al. [10] show how
geometry images [18] allow complex topologies to
be recovered using a globally-convergent quadratic
energy minimization. The FiberMesh system [19] uni-
fies several existing constraint sources in an energy
minimization framework to provide a comprehensive
interactive system for 3D model construction from
curves.

Our approach may be seen as a generalization of
this type of system to morphable models rather than a
single 3D model. However, although previous systems

could use a fixed assignment of the contour generator’s
preimage in surface parameter space with little effect
on the final model, this approach is inadequate for the
morphable model case. Kraevoy et al. [20] find contour
generator preimages using a dynamic programming
approach similar to the discrete optimization we
propose in §5.2. They do not combine this with a
continuous representation, however, and their focus is
fitting a single 3D mesh to a single sketched contour.

If we consider how these approaches might be
adapted to the problem we address in this paper, one
might imagine performing a single-view reconstruction
for each of our input images and then applying
existing morphable model fitting methods. However,
this approach would ignore the shape information
available from multiple viewpoints represented across
the images, depending heavily on the surface smooth-
ness priors used in each reconstruction, as well as
requiring considerably more effort than our proposal.

1.1.2 Rigid reconstruction from multiple views

A second school of 3D recovery uses the information
available in multiple images of a single rigid 3D object
or scene. For textured objects, very effective systems
exist based on interest point detection and matching.
For example, Photo tourism [6] shows that 3D models
can be built from internet-sourced images. However,
our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
untextured (e.g. many animals); second, even textured
object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
individual.

The key prior work in rigid reconstruction is there-
fore systems which recover shape and motion from
contours, and in particular from the object’s occluding
contour or silhouette. With known camera motion,
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and demonstrate good reconstructions by fitting these
models to a single silhouette. However, in all of these
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single 3D model. However, although previous systems

could use a fixed assignment of the contour generator’s
preimage in surface parameter space with little effect
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generator preimages using a dynamic programming
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propose in §5.2. They do not combine this with a
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If we consider how these approaches might be
adapted to the problem we address in this paper, one
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for each of our input images and then applying
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available from multiple viewpoints represented across
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ness priors used in each reconstruction, as well as
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our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
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object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
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modelling of the human head from 3D scans, Blanz
and Vetter [1] demonstrate the enormous power of 3D
morphable models fitted to 2D images; extended to
modelling of the whole body, the range of applications
continues to widen [5]. Chen et al. [13] learn separate
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and demonstrate good reconstructions by fitting these
models to a single silhouette. However, in all of these
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cylinders can be fitted to image silhouettes using an
iterative approach which may be viewed as energy
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energy minimization. The FiberMesh system [19] uni-
fies several existing constraint sources in an energy
minimization framework to provide a comprehensive
interactive system for 3D model construction from
curves.

Our approach may be seen as a generalization of
this type of system to morphable models rather than a
single 3D model. However, although previous systems

could use a fixed assignment of the contour generator’s
preimage in surface parameter space with little effect
on the final model, this approach is inadequate for the
morphable model case. Kraevoy et al. [20] find contour
generator preimages using a dynamic programming
approach similar to the discrete optimization we
propose in §5.2. They do not combine this with a
continuous representation, however, and their focus is
fitting a single 3D mesh to a single sketched contour.

If we consider how these approaches might be
adapted to the problem we address in this paper, one
might imagine performing a single-view reconstruction
for each of our input images and then applying
existing morphable model fitting methods. However,
this approach would ignore the shape information
available from multiple viewpoints represented across
the images, depending heavily on the surface smooth-
ness priors used in each reconstruction, as well as
requiring considerably more effort than our proposal.

1.1.2 Rigid reconstruction from multiple views

A second school of 3D recovery uses the information
available in multiple images of a single rigid 3D object
or scene. For textured objects, very effective systems
exist based on interest point detection and matching.
For example, Photo tourism [6] shows that 3D models
can be built from internet-sourced images. However,
our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
untextured (e.g. many animals); second, even textured
object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
individual.

The key prior work in rigid reconstruction is there-
fore systems which recover shape and motion from
contours, and in particular from the object’s occluding
contour or silhouette. With known camera motion,
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3D Convolutional LSTM
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It is possible to aggregate information from multiple views
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Recurrent Neural Network
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[Christopher Olah] Understanding LSTM Networks, http://
colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory
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[Christopher Olah] Understanding LSTM Networks, http://
colah.github.io/posts/2015-08-Understanding-LSTMs/
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It is possible to aggregate information from multiple views
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•ShapeNet
•50k CAD models
•Render from arbitrary views
•Random number of images w/ random order
•Random background, translation

Training
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•Voxel-wise cross entropy loss
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Towards higher spatial resolution
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Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox
“Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D 
Outputs”
arxiv (March, 2017)
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Progressive voxel refinement
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Results
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Fig. 1. Images showing eight dolphins out of 32, from which we build an 8-parameter morphable model. Top: input images with silhouette
annotations. Middle: The rigid dolphin prototype in initial position for our optimization, showing user-provided point constraints (blue), each of
which corresponds to a point in the image (shown in red). Bottom: final morphable model reconstruction overlaid on the input images.

indicate the potential for ‘linear object classes’ to
describe a variety of complex phenomena. Applied to
modelling of the human head from 3D scans, Blanz
and Vetter [1] demonstrate the enormous power of 3D
morphable models fitted to 2D images; extended to
modelling of the whole body, the range of applications
continues to widen [5]. Chen et al. [13] learn separate
pose and shape models for sharks as well as humans,
and demonstrate good reconstructions by fitting these
models to a single silhouette. However, in all of these
cases, 3D models are built starting from 3D data, while
we wish to recover 3D shape from 2D images.

1.1.1 Single-view reconstruction

The recovery of 3D from 2D is a subject with a long
history. The first class of related techniques comprises
those which recover a 3D model from a single 2D
image. Terzopolous et al. [14] show how generalized
cylinders can be fitted to image silhouettes using an
iterative approach which may be viewed as energy
minimization. Gingold et al. [15] combine generalized
cylinders with user-provided semantic annotations
to create smooth models from 2D sketches. Using
simple image-based rules, Igarashi et al. [16] generate a
variety of impressive 3D models in the TEDDY system.
Karpenko and Hughes [17] allow more topologies in
SMOOTHSKETCH and deal with invisible cusps and
incomplete silhouettes. Prasad et al. [10] show how
geometry images [18] allow complex topologies to
be recovered using a globally-convergent quadratic
energy minimization. The FiberMesh system [19] uni-
fies several existing constraint sources in an energy
minimization framework to provide a comprehensive
interactive system for 3D model construction from
curves.

Our approach may be seen as a generalization of
this type of system to morphable models rather than a
single 3D model. However, although previous systems

could use a fixed assignment of the contour generator’s
preimage in surface parameter space with little effect
on the final model, this approach is inadequate for the
morphable model case. Kraevoy et al. [20] find contour
generator preimages using a dynamic programming
approach similar to the discrete optimization we
propose in §5.2. They do not combine this with a
continuous representation, however, and their focus is
fitting a single 3D mesh to a single sketched contour.

If we consider how these approaches might be
adapted to the problem we address in this paper, one
might imagine performing a single-view reconstruction
for each of our input images and then applying
existing morphable model fitting methods. However,
this approach would ignore the shape information
available from multiple viewpoints represented across
the images, depending heavily on the surface smooth-
ness priors used in each reconstruction, as well as
requiring considerably more effort than our proposal.

1.1.2 Rigid reconstruction from multiple views

A second school of 3D recovery uses the information
available in multiple images of a single rigid 3D object
or scene. For textured objects, very effective systems
exist based on interest point detection and matching.
For example, Photo tourism [6] shows that 3D models
can be built from internet-sourced images. However,
our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
untextured (e.g. many animals); second, even textured
object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
individual.

The key prior work in rigid reconstruction is there-
fore systems which recover shape and motion from
contours, and in particular from the object’s occluding
contour or silhouette. With known camera motion,
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Fig. 1. Images showing eight dolphins out of 32, from which we build an 8-parameter morphable model. Top: input images with silhouette
annotations. Middle: The rigid dolphin prototype in initial position for our optimization, showing user-provided point constraints (blue), each of
which corresponds to a point in the image (shown in red). Bottom: final morphable model reconstruction overlaid on the input images.

indicate the potential for ‘linear object classes’ to
describe a variety of complex phenomena. Applied to
modelling of the human head from 3D scans, Blanz
and Vetter [1] demonstrate the enormous power of 3D
morphable models fitted to 2D images; extended to
modelling of the whole body, the range of applications
continues to widen [5]. Chen et al. [13] learn separate
pose and shape models for sharks as well as humans,
and demonstrate good reconstructions by fitting these
models to a single silhouette. However, in all of these
cases, 3D models are built starting from 3D data, while
we wish to recover 3D shape from 2D images.

1.1.1 Single-view reconstruction

The recovery of 3D from 2D is a subject with a long
history. The first class of related techniques comprises
those which recover a 3D model from a single 2D
image. Terzopolous et al. [14] show how generalized
cylinders can be fitted to image silhouettes using an
iterative approach which may be viewed as energy
minimization. Gingold et al. [15] combine generalized
cylinders with user-provided semantic annotations
to create smooth models from 2D sketches. Using
simple image-based rules, Igarashi et al. [16] generate a
variety of impressive 3D models in the TEDDY system.
Karpenko and Hughes [17] allow more topologies in
SMOOTHSKETCH and deal with invisible cusps and
incomplete silhouettes. Prasad et al. [10] show how
geometry images [18] allow complex topologies to
be recovered using a globally-convergent quadratic
energy minimization. The FiberMesh system [19] uni-
fies several existing constraint sources in an energy
minimization framework to provide a comprehensive
interactive system for 3D model construction from
curves.

Our approach may be seen as a generalization of
this type of system to morphable models rather than a
single 3D model. However, although previous systems

could use a fixed assignment of the contour generator’s
preimage in surface parameter space with little effect
on the final model, this approach is inadequate for the
morphable model case. Kraevoy et al. [20] find contour
generator preimages using a dynamic programming
approach similar to the discrete optimization we
propose in §5.2. They do not combine this with a
continuous representation, however, and their focus is
fitting a single 3D mesh to a single sketched contour.

If we consider how these approaches might be
adapted to the problem we address in this paper, one
might imagine performing a single-view reconstruction
for each of our input images and then applying
existing morphable model fitting methods. However,
this approach would ignore the shape information
available from multiple viewpoints represented across
the images, depending heavily on the surface smooth-
ness priors used in each reconstruction, as well as
requiring considerably more effort than our proposal.

1.1.2 Rigid reconstruction from multiple views

A second school of 3D recovery uses the information
available in multiple images of a single rigid 3D object
or scene. For textured objects, very effective systems
exist based on interest point detection and matching.
For example, Photo tourism [6] shows that 3D models
can be built from internet-sourced images. However,
our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
untextured (e.g. many animals); second, even textured
object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
individual.

The key prior work in rigid reconstruction is there-
fore systems which recover shape and motion from
contours, and in particular from the object’s occluding
contour or silhouette. With known camera motion,
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Fig. 1. Images showing eight dolphins out of 32, from which we build an 8-parameter morphable model. Top: input images with silhouette
annotations. Middle: The rigid dolphin prototype in initial position for our optimization, showing user-provided point constraints (blue), each of
which corresponds to a point in the image (shown in red). Bottom: final morphable model reconstruction overlaid on the input images.

indicate the potential for ‘linear object classes’ to
describe a variety of complex phenomena. Applied to
modelling of the human head from 3D scans, Blanz
and Vetter [1] demonstrate the enormous power of 3D
morphable models fitted to 2D images; extended to
modelling of the whole body, the range of applications
continues to widen [5]. Chen et al. [13] learn separate
pose and shape models for sharks as well as humans,
and demonstrate good reconstructions by fitting these
models to a single silhouette. However, in all of these
cases, 3D models are built starting from 3D data, while
we wish to recover 3D shape from 2D images.

1.1.1 Single-view reconstruction

The recovery of 3D from 2D is a subject with a long
history. The first class of related techniques comprises
those which recover a 3D model from a single 2D
image. Terzopolous et al. [14] show how generalized
cylinders can be fitted to image silhouettes using an
iterative approach which may be viewed as energy
minimization. Gingold et al. [15] combine generalized
cylinders with user-provided semantic annotations
to create smooth models from 2D sketches. Using
simple image-based rules, Igarashi et al. [16] generate a
variety of impressive 3D models in the TEDDY system.
Karpenko and Hughes [17] allow more topologies in
SMOOTHSKETCH and deal with invisible cusps and
incomplete silhouettes. Prasad et al. [10] show how
geometry images [18] allow complex topologies to
be recovered using a globally-convergent quadratic
energy minimization. The FiberMesh system [19] uni-
fies several existing constraint sources in an energy
minimization framework to provide a comprehensive
interactive system for 3D model construction from
curves.

Our approach may be seen as a generalization of
this type of system to morphable models rather than a
single 3D model. However, although previous systems

could use a fixed assignment of the contour generator’s
preimage in surface parameter space with little effect
on the final model, this approach is inadequate for the
morphable model case. Kraevoy et al. [20] find contour
generator preimages using a dynamic programming
approach similar to the discrete optimization we
propose in §5.2. They do not combine this with a
continuous representation, however, and their focus is
fitting a single 3D mesh to a single sketched contour.

If we consider how these approaches might be
adapted to the problem we address in this paper, one
might imagine performing a single-view reconstruction
for each of our input images and then applying
existing morphable model fitting methods. However,
this approach would ignore the shape information
available from multiple viewpoints represented across
the images, depending heavily on the surface smooth-
ness priors used in each reconstruction, as well as
requiring considerably more effort than our proposal.

1.1.2 Rigid reconstruction from multiple views

A second school of 3D recovery uses the information
available in multiple images of a single rigid 3D object
or scene. For textured objects, very effective systems
exist based on interest point detection and matching.
For example, Photo tourism [6] shows that 3D models
can be built from internet-sourced images. However,
our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
untextured (e.g. many animals); second, even textured
object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
individual.

The key prior work in rigid reconstruction is there-
fore systems which recover shape and motion from
contours, and in particular from the object’s occluding
contour or silhouette. With known camera motion,
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on the final model, this approach is inadequate for the
morphable model case. Kraevoy et al. [20] find contour
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propose in §5.2. They do not combine this with a
continuous representation, however, and their focus is
fitting a single 3D mesh to a single sketched contour.

If we consider how these approaches might be
adapted to the problem we address in this paper, one
might imagine performing a single-view reconstruction
for each of our input images and then applying
existing morphable model fitting methods. However,
this approach would ignore the shape information
available from multiple viewpoints represented across
the images, depending heavily on the surface smooth-
ness priors used in each reconstruction, as well as
requiring considerably more effort than our proposal.

1.1.2 Rigid reconstruction from multiple views

A second school of 3D recovery uses the information
available in multiple images of a single rigid 3D object
or scene. For textured objects, very effective systems
exist based on interest point detection and matching.
For example, Photo tourism [6] shows that 3D models
can be built from internet-sourced images. However,
our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
untextured (e.g. many animals); second, even textured
object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
individual.

The key prior work in rigid reconstruction is there-
fore systems which recover shape and motion from
contours, and in particular from the object’s occluding
contour or silhouette. With known camera motion,
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annotations. Middle: The rigid dolphin prototype in initial position for our optimization, showing user-provided point constraints (blue), each of
which corresponds to a point in the image (shown in red). Bottom: final morphable model reconstruction overlaid on the input images.
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modelling of the whole body, the range of applications
continues to widen [5]. Chen et al. [13] learn separate
pose and shape models for sharks as well as humans,
and demonstrate good reconstructions by fitting these
models to a single silhouette. However, in all of these
cases, 3D models are built starting from 3D data, while
we wish to recover 3D shape from 2D images.
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those which recover a 3D model from a single 2D
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iterative approach which may be viewed as energy
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to create smooth models from 2D sketches. Using
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this type of system to morphable models rather than a
single 3D model. However, although previous systems

could use a fixed assignment of the contour generator’s
preimage in surface parameter space with little effect
on the final model, this approach is inadequate for the
morphable model case. Kraevoy et al. [20] find contour
generator preimages using a dynamic programming
approach similar to the discrete optimization we
propose in §5.2. They do not combine this with a
continuous representation, however, and their focus is
fitting a single 3D mesh to a single sketched contour.

If we consider how these approaches might be
adapted to the problem we address in this paper, one
might imagine performing a single-view reconstruction
for each of our input images and then applying
existing morphable model fitting methods. However,
this approach would ignore the shape information
available from multiple viewpoints represented across
the images, depending heavily on the surface smooth-
ness priors used in each reconstruction, as well as
requiring considerably more effort than our proposal.

1.1.2 Rigid reconstruction from multiple views

A second school of 3D recovery uses the information
available in multiple images of a single rigid 3D object
or scene. For textured objects, very effective systems
exist based on interest point detection and matching.
For example, Photo tourism [6] shows that 3D models
can be built from internet-sourced images. However,
our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
untextured (e.g. many animals); second, even textured
object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
individual.

The key prior work in rigid reconstruction is there-
fore systems which recover shape and motion from
contours, and in particular from the object’s occluding
contour or silhouette. With known camera motion,
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continues to widen [5]. Chen et al. [13] learn separate
pose and shape models for sharks as well as humans,
and demonstrate good reconstructions by fitting these
models to a single silhouette. However, in all of these
cases, 3D models are built starting from 3D data, while
we wish to recover 3D shape from 2D images.
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iterative approach which may be viewed as energy
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Karpenko and Hughes [17] allow more topologies in
SMOOTHSKETCH and deal with invisible cusps and
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geometry images [18] allow complex topologies to
be recovered using a globally-convergent quadratic
energy minimization. The FiberMesh system [19] uni-
fies several existing constraint sources in an energy
minimization framework to provide a comprehensive
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curves.

Our approach may be seen as a generalization of
this type of system to morphable models rather than a
single 3D model. However, although previous systems

could use a fixed assignment of the contour generator’s
preimage in surface parameter space with little effect
on the final model, this approach is inadequate for the
morphable model case. Kraevoy et al. [20] find contour
generator preimages using a dynamic programming
approach similar to the discrete optimization we
propose in §5.2. They do not combine this with a
continuous representation, however, and their focus is
fitting a single 3D mesh to a single sketched contour.

If we consider how these approaches might be
adapted to the problem we address in this paper, one
might imagine performing a single-view reconstruction
for each of our input images and then applying
existing morphable model fitting methods. However,
this approach would ignore the shape information
available from multiple viewpoints represented across
the images, depending heavily on the surface smooth-
ness priors used in each reconstruction, as well as
requiring considerably more effort than our proposal.
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A second school of 3D recovery uses the information
available in multiple images of a single rigid 3D object
or scene. For textured objects, very effective systems
exist based on interest point detection and matching.
For example, Photo tourism [6] shows that 3D models
can be built from internet-sourced images. However,
our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
untextured (e.g. many animals); second, even textured
object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
individual.

The key prior work in rigid reconstruction is there-
fore systems which recover shape and motion from
contours, and in particular from the object’s occluding
contour or silhouette. With known camera motion,
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Fig. 1. Images showing eight dolphins out of 32, from which we build an 8-parameter morphable model. Top: input images with silhouette
annotations. Middle: The rigid dolphin prototype in initial position for our optimization, showing user-provided point constraints (blue), each of
which corresponds to a point in the image (shown in red). Bottom: final morphable model reconstruction overlaid on the input images.
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describe a variety of complex phenomena. Applied to
modelling of the human head from 3D scans, Blanz
and Vetter [1] demonstrate the enormous power of 3D
morphable models fitted to 2D images; extended to
modelling of the whole body, the range of applications
continues to widen [5]. Chen et al. [13] learn separate
pose and shape models for sharks as well as humans,
and demonstrate good reconstructions by fitting these
models to a single silhouette. However, in all of these
cases, 3D models are built starting from 3D data, while
we wish to recover 3D shape from 2D images.

1.1.1 Single-view reconstruction

The recovery of 3D from 2D is a subject with a long
history. The first class of related techniques comprises
those which recover a 3D model from a single 2D
image. Terzopolous et al. [14] show how generalized
cylinders can be fitted to image silhouettes using an
iterative approach which may be viewed as energy
minimization. Gingold et al. [15] combine generalized
cylinders with user-provided semantic annotations
to create smooth models from 2D sketches. Using
simple image-based rules, Igarashi et al. [16] generate a
variety of impressive 3D models in the TEDDY system.
Karpenko and Hughes [17] allow more topologies in
SMOOTHSKETCH and deal with invisible cusps and
incomplete silhouettes. Prasad et al. [10] show how
geometry images [18] allow complex topologies to
be recovered using a globally-convergent quadratic
energy minimization. The FiberMesh system [19] uni-
fies several existing constraint sources in an energy
minimization framework to provide a comprehensive
interactive system for 3D model construction from
curves.

Our approach may be seen as a generalization of
this type of system to morphable models rather than a
single 3D model. However, although previous systems

could use a fixed assignment of the contour generator’s
preimage in surface parameter space with little effect
on the final model, this approach is inadequate for the
morphable model case. Kraevoy et al. [20] find contour
generator preimages using a dynamic programming
approach similar to the discrete optimization we
propose in §5.2. They do not combine this with a
continuous representation, however, and their focus is
fitting a single 3D mesh to a single sketched contour.

If we consider how these approaches might be
adapted to the problem we address in this paper, one
might imagine performing a single-view reconstruction
for each of our input images and then applying
existing morphable model fitting methods. However,
this approach would ignore the shape information
available from multiple viewpoints represented across
the images, depending heavily on the surface smooth-
ness priors used in each reconstruction, as well as
requiring considerably more effort than our proposal.

1.1.2 Rigid reconstruction from multiple views

A second school of 3D recovery uses the information
available in multiple images of a single rigid 3D object
or scene. For textured objects, very effective systems
exist based on interest point detection and matching.
For example, Photo tourism [6] shows that 3D models
can be built from internet-sourced images. However,
our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
untextured (e.g. many animals); second, even textured
object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
individual.

The key prior work in rigid reconstruction is there-
fore systems which recover shape and motion from
contours, and in particular from the object’s occluding
contour or silhouette. With known camera motion,
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and Vetter [1] demonstrate the enormous power of 3D
morphable models fitted to 2D images; extended to
modelling of the whole body, the range of applications
continues to widen [5]. Chen et al. [13] learn separate
pose and shape models for sharks as well as humans,
and demonstrate good reconstructions by fitting these
models to a single silhouette. However, in all of these
cases, 3D models are built starting from 3D data, while
we wish to recover 3D shape from 2D images.

1.1.1 Single-view reconstruction

The recovery of 3D from 2D is a subject with a long
history. The first class of related techniques comprises
those which recover a 3D model from a single 2D
image. Terzopolous et al. [14] show how generalized
cylinders can be fitted to image silhouettes using an
iterative approach which may be viewed as energy
minimization. Gingold et al. [15] combine generalized
cylinders with user-provided semantic annotations
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Karpenko and Hughes [17] allow more topologies in
SMOOTHSKETCH and deal with invisible cusps and
incomplete silhouettes. Prasad et al. [10] show how
geometry images [18] allow complex topologies to
be recovered using a globally-convergent quadratic
energy minimization. The FiberMesh system [19] uni-
fies several existing constraint sources in an energy
minimization framework to provide a comprehensive
interactive system for 3D model construction from
curves.

Our approach may be seen as a generalization of
this type of system to morphable models rather than a
single 3D model. However, although previous systems

could use a fixed assignment of the contour generator’s
preimage in surface parameter space with little effect
on the final model, this approach is inadequate for the
morphable model case. Kraevoy et al. [20] find contour
generator preimages using a dynamic programming
approach similar to the discrete optimization we
propose in §5.2. They do not combine this with a
continuous representation, however, and their focus is
fitting a single 3D mesh to a single sketched contour.

If we consider how these approaches might be
adapted to the problem we address in this paper, one
might imagine performing a single-view reconstruction
for each of our input images and then applying
existing morphable model fitting methods. However,
this approach would ignore the shape information
available from multiple viewpoints represented across
the images, depending heavily on the surface smooth-
ness priors used in each reconstruction, as well as
requiring considerably more effort than our proposal.

1.1.2 Rigid reconstruction from multiple views

A second school of 3D recovery uses the information
available in multiple images of a single rigid 3D object
or scene. For textured objects, very effective systems
exist based on interest point detection and matching.
For example, Photo tourism [6] shows that 3D models
can be built from internet-sourced images. However,
our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
untextured (e.g. many animals); second, even textured
object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
individual.

The key prior work in rigid reconstruction is there-
fore systems which recover shape and motion from
contours, and in particular from the object’s occluding
contour or silhouette. With known camera motion,
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Fig. 1. We propose a stereopsis based auto-encoder setup: the encoder (Part 1) is a
traditional convolutional neural network with stacked convolutions and pooling layers
(See Figure 2) and maps the left image (I1) of the rectified stereo pair into its depth
map. Our decoder (Part 2) explicitly forces the encoder output to be disparities (scaled
inverse depth) by synthesizing a backward warp image (Iw) by moving pixels from right
image I2 along the scan-line. We use the reconstructed output Iw to be matched with
the encoder input (Part 3) via a simple loss. For end-to-end training, we minimize the
reconstruction loss with a simple smoothness prior on disparities which deals with the
aperture problem, while at test time our CNN performs single-view disparity (inverse
depth) prediction, up to the scene scale given in form of fB at the time of training.

For example, despite using state-of-the-art 3D sensors, multiple calibrated cam-
eras and inertial sensors, a dataset like KITTI [13] provides sparse depthmaps
with less than 5% density on the captured image resolutions and with only a
limited reliable depth range. A significant challenge now is to develop unsuper-
vised training regimes that can train networks that perform either as well as,
or better than those trained used using these supervised methods. This will be
a major step towards realizing in-situ learning, in which we can retrain or tune
a network for specific circumstances, and towards life-long learning, in which
continuous acquisition of data leads to improved performance over time.

In this paper we are particularly concerned with the task of single-view depth
estimation, in which the goal is to learn a non linear prediction function which
maps an image to its depth map. CNNs have achieved the state-of-the-art per-
formance on this task due to their ability to capture the complex and implicit
relationships between scene depth and the corresponding image textures, scene
semantics, and local and global context in the image. State-of-the-art supervised
learning methods for this task train a CNN to minimize a loss based on either
the scale invariant RMS [8], or the log RMS [24] of the depth predictions from
ground-truth. These networks have been trained using datasets that provide
both RGB images and corresponding depthmaps such as NYUv2 and KITTI.

However as noted in [24], the networks learned by these systems do not
generalize well outside their immediate domain of application. For example, [24]
trained two separate networks, one for indoors (using NYUv2) and one for street
scenes (using KITTI), because the weights learned in one do not work well in
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Figure 1: (a) Understanding 3D object from learning agent’s perspective; (b) Single-view 3D volume
reconstruction with perspective transformation. (c) Illustration of perspective projection. The
minimum and maximum disparity in the screen coordinates are denoted as dmin and dmax.

In this paper, we focus on the 3D shape learning by ignoring the color and texture factors, and
we further simplify the problem by making the following assumptions: 1) the scene is clean white
background; 2) the illumination is constant natural lighting. We use the volumetric representation of
3d shape V where each voxel Vi is a binary unit. In other words, the voxel equals to one, i.e., Vi = 1,
if the i-th voxel sapce is occupied by the shape; otherwise Vi = 0. Assuming the 2D silhouette S

(k)

is obtained from the k-th image I(k), we can specify the 3D-2D projection S
(k) = P (V;↵(k)). Note

that 2D silhouette estimation is typically solved by object segmentation in real-world but it becomes
trivial in our case due to the white background.

In the following sub-sections, we propose a formulation for learning to predict the volumetric 3D
shape V from an image I

(k) with and without the 3D volume supervision.

3.1 Learning to Reconstruct Volumetric 3D Shape from Single-View
We consider single-view volumetric 3D reconstruction as a dense prediction problem and develop a
convolutional encoder-decoder network for this learning task denoted by V̂ = f(I(k)). The encoder
network h(·) learns a viewpoint-invariant latent representation h(I(k)) which is then used by the
decoder g(·) to generate the volume V̂ = g(h(I(k))). In case the ground truth volumetric shapes V
are available, the problem can be easily considered as learning volumetric 3D shapes with a regular
reconstruction objective in 3D space: Lvol(I(k)) = ||f(I(k))�V||22.

In practice, however, the ground truth volumetric 3D shapes may not be available for training. For
example, the agent observes the 2D silhouette via its built-in camera without accessing the volumetric
3D shape. Inspired by the space carving theory [10], we propose a silhouette-based volumetric loss
function. In particular, we build on the premise that a 2D silhouette Ŝ(j) projected from the generated
volume V̂ under certain camera viewpoint ↵(j) should match the ground truth 2D silhouette S

(j)

from image observations. In other words, if all the generated silhouettes Ŝ(j) match well with their
corresponding ground truth silhouettes S(j) for all j’s, then we hypothesize that the generated volume
V̂ should be as good as one instance of visual hull equivalent class of the ground truth volume V [10].
Therefore, we formulate the learning objective for the k-th image as

Lproj(I
(k)) =

nX

j=1

L(j)
proj

(I(k);S(j)
,↵

(j)) =
1

n

nX

j=1

||P (f(I(k));↵(j))� S
(j)||22, (1)

where j is the index of output 2D silhouettes, n is the number of silhouettes used for each input image
and P (·) is the 3D-2D projection function. Note that the above training objective Eq. (1) enables
training without using ground-truth volumes. The network diagram is illustrated in Figure 1(b). A
more general learning objective is given by a combination of both objectives:

Lcomb(I
(k)) = �projLproj(I

(k)) + �volLvol(I
(k)), (2)

where �proj and �vol are constants that control the tradeoff between the two losses.

3.2 Perspective Transformer Networks
As defined previously, 2D silhouette S

(k) is obtained via perspective projection given input 3D
volume V and specific camera viewpoint ↵(k). In this work, we implement the perspective projection
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Fig. 1. We propose a stereopsis based auto-encoder setup: the encoder (Part 1) is a
traditional convolutional neural network with stacked convolutions and pooling layers
(See Figure 2) and maps the left image (I1) of the rectified stereo pair into its depth
map. Our decoder (Part 2) explicitly forces the encoder output to be disparities (scaled
inverse depth) by synthesizing a backward warp image (Iw) by moving pixels from right
image I2 along the scan-line. We use the reconstructed output Iw to be matched with
the encoder input (Part 3) via a simple loss. For end-to-end training, we minimize the
reconstruction loss with a simple smoothness prior on disparities which deals with the
aperture problem, while at test time our CNN performs single-view disparity (inverse
depth) prediction, up to the scene scale given in form of fB at the time of training.

For example, despite using state-of-the-art 3D sensors, multiple calibrated cam-
eras and inertial sensors, a dataset like KITTI [13] provides sparse depthmaps
with less than 5% density on the captured image resolutions and with only a
limited reliable depth range. A significant challenge now is to develop unsuper-
vised training regimes that can train networks that perform either as well as,
or better than those trained used using these supervised methods. This will be
a major step towards realizing in-situ learning, in which we can retrain or tune
a network for specific circumstances, and towards life-long learning, in which
continuous acquisition of data leads to improved performance over time.

In this paper we are particularly concerned with the task of single-view depth
estimation, in which the goal is to learn a non linear prediction function which
maps an image to its depth map. CNNs have achieved the state-of-the-art per-
formance on this task due to their ability to capture the complex and implicit
relationships between scene depth and the corresponding image textures, scene
semantics, and local and global context in the image. State-of-the-art supervised
learning methods for this task train a CNN to minimize a loss based on either
the scale invariant RMS [8], or the log RMS [24] of the depth predictions from
ground-truth. These networks have been trained using datasets that provide
both RGB images and corresponding depthmaps such as NYUv2 and KITTI.

However as noted in [24], the networks learned by these systems do not
generalize well outside their immediate domain of application. For example, [24]
trained two separate networks, one for indoors (using NYUv2) and one for street
scenes (using KITTI), because the weights learned in one do not work well in
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1 Novel View Consistency

We aim to learn a function f , which given a single image I , outputs a 3D model of the underlying
object/scene. We model f as a parametrized CNN f✓ such that x = f✓(I) yields a probability
distribution for occupancies of cells in a discretized 3D voxel grid. However, we do not assume that
the ground-truth 3D x̃I is available for learning this f✓. Instead, we have access to image-camera
pairs {Dk, Ck} where Dk is the observed novel depth image (or segmentation mask) of the same
object/scene as in I but under camera (rotation, translation) Ck. Note that the novel views are required
only during training and the learned CNN f✓ can reconstruct from a single image at test time.

1.1 Ray-based Consistency

An image is a collection of rays, each with a recorded observation (color/depth/semantic label). An
image pixel (u, v) corresponds to a ray r originating from the camera centre travelling in direction
(u�u0

fu
, v�v0

fv
, 1). Given the camera coordinate frame Ck ⌘ (Rk, tk), the origin or and direction �r

can also be inferred in the world frame. Therefore, a collection of images from various views is
equivalently a collection of arbitrary rays r ⌘ (or,�r).

For each ray r, we also get some additional observations e.g. depth images indicate the distance
travelled before hitting a surface, silhouette images inform whether the ray hit the object. We
formulate a consistency term Lr(x) to capture if the inferred 3D model x = f✓(I) correctly explains
the observations associated with an arbitrary ray r. Our novel view consistency loss is then just an
average of the consistency terms across the rays.

1.2 Ray Potential

Let xr denote the ordered set of variables corresponding to occupancies of voxels through which the
ray r passes, with |xr| = Nr. We assume the event xr

i = 1 corresponds to the particular voxel being
unoccupied and denote p(xr

i = 1) by xr
i .

Ray Termination Probabilities. Let zr represent a random variable corresponding to the voxel in
which the ray (probabilistically) terminates - with zr = Nr + 1 to represent the case where the ray
does not terminate. Assuming independent distributions of voxel occupancies, parametrized by xr

i ,
we can compute the probability distribution for the random variable zr.

p(zr = i) =

8
>>>>><

>>>>>:

(1� xr
i )

i�1Y

j=1

xr
j , if i  Nr

NrY

j=1

xr
j , if i = Nr + 1

(1)
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object/scene. We model f as a parametrized CNN f✓ such that x = f✓(I) yields a probability
distribution for occupancies of cells in a discretized 3D voxel grid. However, we do not assume that
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pairs {Dk, Ck} where Dk is the observed novel depth image (or segmentation mask) of the same
object/scene as in I but under camera (rotation, translation) Ck. Note that the novel views are required
only during training and the learned CNN f✓ can reconstruct from a single image at test time.
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An image is a collection of rays, each with a recorded observation (color/depth/semantic label). An
image pixel (u, v) corresponds to a ray r originating from the camera centre travelling in direction
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can also be inferred in the world frame. Therefore, a collection of images from various views is
equivalently a collection of arbitrary rays r ⌘ (or,�r).

For each ray r, we also get some additional observations e.g. depth images indicate the distance
travelled before hitting a surface, silhouette images inform whether the ray hit the object. We
formulate a consistency term Lr(x) to capture if the inferred 3D model x = f✓(I) correctly explains
the observations associated with an arbitrary ray r. Our novel view consistency loss is then just an
average of the consistency terms across the rays.

1.2 Ray Potential

Let xr denote the ordered set of variables corresponding to occupancies of voxels through which the
ray r passes, with |xr| = Nr. We assume the event xr

i = 1 corresponds to the particular voxel being
unoccupied and denote p(xr
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Ray Termination Probabilities. Let zr represent a random variable corresponding to the voxel in
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1 Novel View Consistency

We aim to learn a function f , which given a single image I , outputs a 3D model of the underlying
object/scene. We model f as a parametrized CNN f✓ such that x = f✓(I) yields a probability
distribution for occupancies of cells in a discretized 3D voxel grid. However, we do not assume that
the ground-truth 3D x̃I is available for learning this f✓. Instead, we have access to image-camera
pairs {Dk, Ck} where Dk is the observed novel depth image (or segmentation mask) of the same
object/scene as in I but under camera (rotation, translation) Ck. Note that the novel views are required
only during training and the learned CNN f✓ can reconstruct from a single image at test time.

1.1 Ray-based Consistency

An image is a collection of rays, each with a recorded observation (color/depth/semantic label). An
image pixel (u, v) corresponds to a ray r originating from the camera centre travelling in direction
(u�u0

fu
, v�v0

fv
, 1). Given the camera coordinate frame Ck ⌘ (Rk, tk), the origin or and direction �r

can also be inferred in the world frame. Therefore, a collection of images from various views is
equivalently a collection of arbitrary rays r ⌘ (or,�r).

For each ray r, we also get some additional observations e.g. depth images indicate the distance
travelled before hitting a surface, silhouette images inform whether the ray hit the object. We
formulate a consistency term Lr(x) to capture if the inferred 3D model x = f✓(I) correctly explains
the observations associated with an arbitrary ray r. Our novel view consistency loss is then just an
average of the consistency terms across the rays.

1.2 Ray Potential

Let xr denote the ordered set of variables corresponding to occupancies of voxels through which the
ray r passes, with |xr| = Nr. We assume the event xr

i = 1 corresponds to the particular voxel being
unoccupied and denote p(xr

i = 1) by xr
i .

Ray Termination Probabilities. Let zr represent a random variable corresponding to the voxel in
which the ray (probabilistically) terminates - with zr = Nr + 1 to represent the case where the ray
does not terminate. Assuming independent distributions of voxel occupancies, parametrized by xr

i ,
we can compute the probability distribution for the random variable zr.

p(zr = i) =

8
>>>>><

>>>>>:

(1� xr
i )

i�1Y

j=1

xr
j , if i  Nr

NrY
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1 Novel View Consistency

We aim to learn a function f , which given a single image I , outputs a 3D model of the underlying
object/scene. We model f as a parametrized CNN f✓ such that x = f✓(I) yields a probability
distribution for occupancies of cells in a discretized 3D voxel grid. However, we do not assume that
the ground-truth 3D x̃I is available for learning this f✓. Instead, we have access to image-camera
pairs {Dk, Ck} where Dk is the observed novel depth image (or segmentation mask) of the same
object/scene as in I but under camera (rotation, translation) Ck. Note that the novel views are required
only during training and the learned CNN f✓ can reconstruct from a single image at test time.

1.1 Ray-based Consistency

An image is a collection of rays, each with a recorded observation (color/depth/semantic label). An
image pixel (u, v) corresponds to a ray r originating from the camera centre travelling in direction
(u�u0

fu
, v�v0

fv
, 1). Given the camera coordinate frame Ck ⌘ (Rk, tk), the origin or and direction �r

can also be inferred in the world frame. Therefore, a collection of images from various views is
equivalently a collection of arbitrary rays r ⌘ (or,�r).

For each ray r, we also get some additional observations e.g. depth images indicate the distance
travelled before hitting a surface, silhouette images inform whether the ray hit the object. We
formulate a consistency term Lr(x) to capture if the inferred 3D model x = f✓(I) correctly explains
the observations associated with an arbitrary ray r. Our novel view consistency loss is then just an
average of the consistency terms across the rays.

1.2 Ray Potential

Let xr denote the ordered set of variables corresponding to occupancies of voxels through which the
ray r passes, with |xr| = Nr. We assume the event xr

i = 1 corresponds to the particular voxel being
unoccupied and denote p(xr

i = 1) by xr
i .

Ray Termination Probabilities. Let zr represent a random variable corresponding to the voxel in
which the ray (probabilistically) terminates - with zr = Nr + 1 to represent the case where the ray
does not terminate. Assuming independent distributions of voxel occupancies, parametrized by xr

i ,
we can compute the probability distribution for the random variable zr.

p(zr = i) =
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ray travels before terminating. We can define a cost function
between the induced prediction under the event (zr = i)
and the available associated observations for ray or. We de-
note this cost function as  r(i) and it assigns a cost to event
(zr = i) based on whether it induces predictions inconsis-
tent with or. We now show some examples of event cost
functions that can incorporate diverse observations or and
used in various scenarios.

Object Reconstruction from Depth Observations. In this
scenario, the available observation or corresponds to the ob-
served distance the ray travels dr. We use a simple distance
measure between observed distance and event-induced dis-
tance to define  r(i).

 
depth
r (i) = |dri � dr| (3)

Object Reconstruction from Foreground Masks. We ex-
amine the case where we only know the object masks from
various views. In this scenario, let sr 2 {0, 1} denote the
known information regarding each ray - sr = 0 implies the
ray r intersects the object i.e. corresponds to an image pixel
within the mask, sr = 1 indicates otherwise. We can cap-
ture this by defining the corresponding cost terms.

 
mask
r (i) =

(
sr, if i  Nr

1� sr, if i = Nr + 1
(4)

We note that some concurrent approaches [25, 38] have also
been proposed to specifically address the case of learning
object reconstruction from foreground masks. These ap-
proaches, either though a learned [25] or fixed [38] repro-
jection function, minimize the discrepancy between the ob-
served mask and the reprojected predictions. We show in
the appendix that our ray consistency based approach ef-
fectively minimizes a similar loss using a geometrically de-
rived re-projection function, while also allowing us to han-
dle more general observations.

3.4. Ray-Consistency Loss

We have examined the case of a ray traversing through
the probabilistically occupied voxel grid and defined possi-
ble ray-termination events occurring with probability distri-
bution specified by p(zr). For each of these events, we incur
a corresponding cost  r(i) which penalizes inconsistency
between the event-induced predictions and available obser-
vations or. The per-ray consistency loss function Lr(x) is
simply the expected cost incurred.

Lr(x) = Ezr [ r(zr)] (5)

Lr(x) =
Nr+1X

i=1

 r(i) p(zr = i) (6)

Recall that the event probabilities p(zr = i) were defined
in terms of the voxel occupancies x predicted by the CNN
(Eq. 2). Using this, we can compute the derivatives of
the loss function Lr(x) w.r.t the CNN predictions (see Ap-
pendix for derivation).

@ Lr(x)

@ xr
k

=
NrX

i=k

( r(i+ 1)�  r(i))
Y

1ji,j 6=k

x
r
j (7)

The ray-consisteny loss Lr(x) completes our formulation of
view consistency loss as the overall loss is defined in terms
of Lr(x) as in Eq. 1. The gradients derived from the view
consistency loss simply try to adjust the voxel occupancy
predictions x, such that events which are inconsistent with
the observations occur with lower probabilities.

3.5. Incorporating Additional Labels

We have developed a view consistency formulation for
the setting where the shape representation is described as
occupancy probabilities x. In the scenario where alternate
per-pixel observations (e.g. semantics or color) are avail-
able, we can modify consistency formulation to account for
per-voxel predictions p in the 3D representation. In this sce-
nario, the observation or associated with the ray r includes
the corresponding pixel label and similarly, the induced pre-
diction under event (zr = i) includes the auxiliary predic-
tion for the i

th voxel on the ray’s path – p
r
i .

To incorporate consistency between these, we can extend
Lr(x) to Lr(x, [p]) by using a generalized event-cost term
 r(i, [pri ]) in Eq. 5 and Eq. 6. Examples of the general-
ized cost term for two scenarios are presented in Eq. 9 and
Eq. 10. The gradients for occupancy predictions x

r
i are as

previously defined in Eq. 7, but using the generalized cost
term  r(i, [pri ]) instead. The additional per-voxel predic-
tions can also be trained using the derivatives below.

@ Lr(x, [p])

@ pir

= p(zr = i)
@  r(i, [pir])

@ pir

(8)

Note that we can define any event cost function  (i, [pri ])
as long as it is differentiable w.r.t pri . We can interpret Eq. 8
as the additional per-voxel predictions p being updated to
match the observed pixel-wise labels, with the gradient be-
ing weighted by the probability of the corresponding event.

Scene Reconstruction from Depth and Semantics. In
this setting, the observations associated with each ray cor-
respond to an observed depth dr as well as semantic class
labels cr. The event-induced prediction, if zr = i, cor-
responds to depth d

r
i and class distribution p

r
i and we can

define an event cost penalizing the discrepancy in dispar-
ity (since absolute depth can have a large variation) and the
negative log likelihood of the observed class.

 
sem
r (i, pri ) = | 1

dri

� 1

dr
|� log(pri (cr)) (9)
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amine the case where we only know the object masks from
various views. In this scenario, let sr 2 {0, 1} denote the
known information regarding each ray - sr = 0 implies the
ray r intersects the object i.e. corresponds to an image pixel
within the mask, sr = 1 indicates otherwise. We can cap-
ture this by defining the corresponding cost terms.
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We note that some concurrent approaches [25, 38] have also
been proposed to specifically address the case of learning
object reconstruction from foreground masks. These ap-
proaches, either though a learned [25] or fixed [38] repro-
jection function, minimize the discrepancy between the ob-
served mask and the reprojected predictions. We show in
the appendix that our ray consistency based approach ef-
fectively minimizes a similar loss using a geometrically de-
rived re-projection function, while also allowing us to han-
dle more general observations.

3.4. Ray-Consistency Loss

We have examined the case of a ray traversing through
the probabilistically occupied voxel grid and defined possi-
ble ray-termination events occurring with probability distri-
bution specified by p(zr). For each of these events, we incur
a corresponding cost  r(i) which penalizes inconsistency
between the event-induced predictions and available obser-
vations or. The per-ray consistency loss function Lr(x) is
simply the expected cost incurred.

Lr(x) = Ezr [ r(zr)] (5)

Lr(x) =
Nr+1X

i=1

 r(i) p(zr = i) (6)

Recall that the event probabilities p(zr = i) were defined
in terms of the voxel occupancies x predicted by the CNN
(Eq. 2). Using this, we can compute the derivatives of
the loss function Lr(x) w.r.t the CNN predictions (see Ap-
pendix for derivation).
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The ray-consisteny loss Lr(x) completes our formulation of
view consistency loss as the overall loss is defined in terms
of Lr(x) as in Eq. 1. The gradients derived from the view
consistency loss simply try to adjust the voxel occupancy
predictions x, such that events which are inconsistent with
the observations occur with lower probabilities.

3.5. Incorporating Additional Labels

We have developed a view consistency formulation for
the setting where the shape representation is described as
occupancy probabilities x. In the scenario where alternate
per-pixel observations (e.g. semantics or color) are avail-
able, we can modify consistency formulation to account for
per-voxel predictions p in the 3D representation. In this sce-
nario, the observation or associated with the ray r includes
the corresponding pixel label and similarly, the induced pre-
diction under event (zr = i) includes the auxiliary predic-
tion for the i

th voxel on the ray’s path – p
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To incorporate consistency between these, we can extend
Lr(x) to Lr(x, [p]) by using a generalized event-cost term
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ized cost term for two scenarios are presented in Eq. 9 and
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ray travels before terminating. We can define a cost function
between the induced prediction under the event (zr = i)
and the available associated observations for ray or. We de-
note this cost function as  r(i) and it assigns a cost to event
(zr = i) based on whether it induces predictions inconsis-
tent with or. We now show some examples of event cost
functions that can incorporate diverse observations or and
used in various scenarios.

Object Reconstruction from Depth Observations. In this
scenario, the available observation or corresponds to the ob-
served distance the ray travels dr. We use a simple distance
measure between observed distance and event-induced dis-
tance to define  r(i).

 
depth
r (i) = |dri � dr| (3)

Object Reconstruction from Foreground Masks. We ex-
amine the case where we only know the object masks from
various views. In this scenario, let sr 2 {0, 1} denote the
known information regarding each ray - sr = 0 implies the
ray r intersects the object i.e. corresponds to an image pixel
within the mask, sr = 1 indicates otherwise. We can cap-
ture this by defining the corresponding cost terms.

 
mask
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1� sr, if i = Nr + 1
(4)

We note that some concurrent approaches [25, 38] have also
been proposed to specifically address the case of learning
object reconstruction from foreground masks. These ap-
proaches, either though a learned [25] or fixed [38] repro-
jection function, minimize the discrepancy between the ob-
served mask and the reprojected predictions. We show in
the appendix that our ray consistency based approach ef-
fectively minimizes a similar loss using a geometrically de-
rived re-projection function, while also allowing us to han-
dle more general observations.

3.4. Ray-Consistency Loss

We have examined the case of a ray traversing through
the probabilistically occupied voxel grid and defined possi-
ble ray-termination events occurring with probability distri-
bution specified by p(zr). For each of these events, we incur
a corresponding cost  r(i) which penalizes inconsistency
between the event-induced predictions and available obser-
vations or. The per-ray consistency loss function Lr(x) is
simply the expected cost incurred.

Lr(x) = Ezr [ r(zr)] (5)

Lr(x) =
Nr+1X

i=1

 r(i) p(zr = i) (6)

Recall that the event probabilities p(zr = i) were defined
in terms of the voxel occupancies x predicted by the CNN
(Eq. 2). Using this, we can compute the derivatives of
the loss function Lr(x) w.r.t the CNN predictions (see Ap-
pendix for derivation).

@ Lr(x)

@ xr
k

=
NrX

i=k

( r(i+ 1)�  r(i))
Y

1ji,j 6=k

x
r
j (7)

The ray-consisteny loss Lr(x) completes our formulation of
view consistency loss as the overall loss is defined in terms
of Lr(x) as in Eq. 1. The gradients derived from the view
consistency loss simply try to adjust the voxel occupancy
predictions x, such that events which are inconsistent with
the observations occur with lower probabilities.

3.5. Incorporating Additional Labels

We have developed a view consistency formulation for
the setting where the shape representation is described as
occupancy probabilities x. In the scenario where alternate
per-pixel observations (e.g. semantics or color) are avail-
able, we can modify consistency formulation to account for
per-voxel predictions p in the 3D representation. In this sce-
nario, the observation or associated with the ray r includes
the corresponding pixel label and similarly, the induced pre-
diction under event (zr = i) includes the auxiliary predic-
tion for the i

th voxel on the ray’s path – p
r
i .

To incorporate consistency between these, we can extend
Lr(x) to Lr(x, [p]) by using a generalized event-cost term
 r(i, [pri ]) in Eq. 5 and Eq. 6. Examples of the general-
ized cost term for two scenarios are presented in Eq. 9 and
Eq. 10. The gradients for occupancy predictions x

r
i are as

previously defined in Eq. 7, but using the generalized cost
term  r(i, [pri ]) instead. The additional per-voxel predic-
tions can also be trained using the derivatives below.

@ Lr(x, [p])

@ pir

= p(zr = i)
@  r(i, [pir])

@ pir

(8)

Note that we can define any event cost function  (i, [pri ])
as long as it is differentiable w.r.t pri . We can interpret Eq. 8
as the additional per-voxel predictions p being updated to
match the observed pixel-wise labels, with the gradient be-
ing weighted by the probability of the corresponding event.

Scene Reconstruction from Depth and Semantics. In
this setting, the observations associated with each ray cor-
respond to an observed depth dr as well as semantic class
labels cr. The event-induced prediction, if zr = i, cor-
responds to depth d

r
i and class distribution p

r
i and we can

define an event cost penalizing the discrepancy in dispar-
ity (since absolute depth can have a large variation) and the
negative log likelihood of the observed class.

 
sem
r (i, pri ) = | 1

dri

� 1

dr
|� log(pri (cr)) (9)
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Learning Single-view Reconstruction
ShapeNet

Supervision : Pose + Depth/Mask 

PASCAL VOC

Supervision : Pose + Mask 

ShapeNet (color supervised)

Supervision : Pose + RGB
Supervision : Ego-motion, 

Depth, Semantics
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Code : https://github.com/shubhtuls/drc

Thank You
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https://github.com/shubhtuls/drc
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