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Popular 3D volumetric data

Manufacturing
(finite-element analysis)
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3D Shape Analysis
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CNN for 3D Shape Analysis
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Goal

- General
- Efficient
- Effective
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- Efficient
- Effective

Time cost




Goal

- General
- Efficient
- Effective
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Key Challenge
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The sparsity characteristic of 3D data

#occupied grid e, '
#total grid
Occupancy: 10.41% 5.09% 241%

Resolution: 32 64 128
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Full Voxel based Solutions

*. Related work: [wu et al. 2015], [Maturana and Scherer 2015], ...
- General: intuitive extension of images v
. Efficient: 0(N3) 2
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- Store the sparse surface signa

the computation near the surface

IN

- Constra

NN N

A AFNIO,
AVAVAVETAY.v,
FEELv
Sfwvaraar PN

AVAVAVAVY,

B
Oy

i avAY
Y L avavay

VYV AT S
Ly 7
AR S




Octree based CNN (O-CNN)

Solution
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Octree Data Structure
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Octree Data Structure
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Convolution on Octree
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Convolution on Octree

* Neighborhood searching: Hash table
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Pooling on Octree
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Pooling on Octree
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Other CNN Operations on Octree

- Convolution with stride > 1

- Deconvolution and un-pooling
* Inverse operations of convolution and pooling

- Support most CNN architectures for images

* LeNet [Lecun et al. 1998], GooglLeNet [Szegedy et al. 2015],
ResNet [He et al. 2016], DeconvNet [Noh et al . 2015], FCN
[Long et al. 2013] ...



O-CNN for Shape Analysis

- Shape classification and + Shape segmentation

retrieval - DeconvNet [Noh et al . 2015] +
- LeNet [Lecun et al. 1998] DenseCRF [Krahenbiihl and




Efficiency of O-CNN

* O-CNN vs. full voxel CNN
- Geforce 1080 GPU (8GB); Batch size 32

Voxel CNIN




Computational Efficiency
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Memory Efficiency

Memory (GB)
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Results — Classification gtbl |

: recognize the shape category Network | without voting
: Princeton ModelNet40, VoxNet (323)
12311 3D models, 40 categories Geometry image
e _ SubVolSup (32°)
. classification accuracy RBigSNED

FPNN+normal(64%)
PointNet
VRN (32°)

O-CNN(3) 85.5%
O-CNN(4) 88.3%
O-CNN(5) 30 6%
O-CNN(6)
(
(
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Results — Shape Retrieval

g

- Task: Given a query shape, retrieve similar shapes from the database
- Dataset: ShapeNet55 Core, 51190 3D models, 55 categories
- Evalution metric: precision, recall, mAP, F-score, and NDCG

| P@N | R@N | F1@N | mAP | NDCG@N

atsuma_DB 4z : 0.472 | 0.728 0.875
Wang CCMLT]| 0. . 0.391 | 0.823 0.836
Li_ViewAggr . . 0.582 | 0.829 0.904
Bai_GIFT : : 0.689 | 0.825 0.896

0.764 | 0.873 0.899

Retrieval 0.763 | 0.871 0.904

(O-CNN© | 0478 (0782 | (0476|0875 | 0505 |




Results — Segmentation

fe--al

- Task: Segment a 3D shape into semantic parts

- Dataset: dataset from [Yi et al. 2016], 16881 models, 2~6 parts
- Evaluation metric: Intersection over Union

| mean | plane i . knife

# shapes | | 2690 392

— [Yiet al. 2016] 81.4 81.0 . 85.4
PointNet [Qi et al. 2017] || 83.7 83.4 . 85.9
: SpecCNN [Yi et al. 2017]) | 84.7 | 81.6 .

86.1

Segmentation




Conclusion

- Key idea
- Store sparse surface signal
- Constrain the computation near surface

« Octree based 3D CNNs
- General, efficient, and effective

Code and data online
http://wang-ps.github.io/O-CNN
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Shape Reconstruction



How do we learn to perceive 3D 7




How do we learn to perceive 3D 7




Single-view Reconstruction

Roberts. PhD Thesis, MIT. 1963
Unsupervised



able 3D Model

Cashman & Fitzgibbon, PAMI 2013
Roberts. PhD Thesis, MIT. 1963 Kar et al.. CVPR 2015

Unsupervised Supervision : Masks + Pose



Cashman & Fitzgibbon, PAMI 2013
Roberts. PhD Thesis, MIT. 1963 Kar et al.. CVPR 2015

Unsupervised Supervision : Masks + Pose
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Choy et al., Girdhar et al.
ECCV 2016
Supervision : Ground-truth 3D
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3D Convolutional LSTM
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Decoder

1

rT 3D Convolutional LSTM T views
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It is possible to aggregate information from multiple views

=

rT 3D Convolutional LSTM T vews
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Recurrent Neural Network
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[Christopher Olah] Understanding LSTM Networks, http:/
colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory
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[Christopher Olah] Understanding LSTM Networks, http:/
colah.github.io/posts/2015-08-Understanding-LSTMs/
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It is possible to aggregate information from multiple views

=

rT 3D Convolutional LSTM T vews
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Training

*ShapeNet
50k CAD models
*Render from arbitrary views
Random number of images w/ random order

Random background, translation
L(X,y) = Z Y(i,j,k) log(p(z',j,k)) +(1- y(i,j,k)) log(1 — p(i,j,k))
1,7,k

* Voxel-wise cross entropy loss
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Towards higher spatial resolution

Octree Octree Octree
level 1 level 2 level 3

o T o

1283

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox

“Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D
Outputs”

arxiv (March, 2017)
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Progressive voxel refinement

Fi Fi F
cee OGNConv OGNProp cee
d; (one or more)
(@
da
l 13 conv /
[[] propagated features
OGNLoss [] empty
B S——
M filled
[[] mixed
Ground truth Prediction
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Results

Input 1283 2563 GT 2563
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Single-view Reconstructio

Cashman & Fitzgibbon, PAMI 2013
Roberts. PhD Thesis, MIT. 1963 Kar et al.. CVPR 2015

Unsupervised Supervision : Masks + Pose

2
%

2
(@]

But we don’t have

Choy et al., Girdhar et al.
cround-truth 3D !

ECCV 2016
Supervision : Ground-truth 3D




Single-view Reconstruction

Object Detection and
Instance chmcntat on

Viewpoint Estimation

High Frequency
3D Reconstruction Depth Map

Cashman & Fitzgibbon, PAMI 2013
Roberts. PhD Thesis, MIT. 1963 Kar et al.. CVPR 2015

Unsupervised Supervision : Masks + Pose

Deformable 3D Model
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Choy et al., Girdhar et al.
ECCV 2016
Supervision : Ground-truth 3D




Single-view

Roberts. PhD Thesis, MIT. 1963
Unsupervised

24¥9

Loss

Choy et al., Girdhar et al.
ECCV 2016
Supervision : Ground-truth 3D

Reconstru ction
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Deformable 3D Model 3D Recons truction

Cashman & Fitzgibbon, PAMI 2013
Kar et al., CVPR 2015
Supervision : Masks + Pose
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Viewpoint Estimation

Multi-view Supervisionfor Single-viewReconstructionvia Differentiable Ray Consistency
Tulsiani etal.

Supervision : Multi-view
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Text Box
Multi-view Supervision for Single-view Reconstruction via Differentiable Ray Consistency 
Tulsiani et al.


Single-view Reconstruction

Object Detection an d

Image

Deformable 3D Model 3D Reconstruction

Cashman & Fitzgibbon, PAMI 2013

Roberts. PhD Thesis, MIT. 1963 Kar et al., CVPR 2015
Unsupervised Supervision : Masks + Pose
384 ﬁi
U §

Choy et al., Girdhar et al.
ECCV 2016
Supervision : Ground-truth 3D

Multi-view Supervisionfor Single-viewReconstructionvia Differentiable Ray Consistency
Tulsiani et al.

Supervision : Multi-view
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Text Box
Multi-view Supervision for Single-view Reconstruction via Differentiable Ray Consistency 
Tulsiani et al.


How to use Multi-view Supervision ?

CNN

Input Image



How to use Multi-view Supervision ?

7

CNN

Input Image

5

Observation O
from camera C



How to use Multi-view Supervision ?

Observation O
from camera C



How to use Multi-view Supervision ?

Geometrically Geometrically Geometrically
Inconsistent Consistent Inconsistent

Observation O
from camera C



Learning via Geometric Consistency

CNN

Input Image

Observation O
from camera C



Learning via Geometric Consistency

CNN

Input Image l
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Observation O Geometric
from camera C Consistency Loss




Learning via Geometric Consistency

CNN

Input Image l
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Learning via Geometric Consistency

CNN

Input Image l
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Observation O Geometric
from camera C Consistency Loss




3D from Geometric Consistency



3D from Geometric Consistency

Space Carving, Multi-view Stereo, Multi-view Reconstruction



3D from Geometric Consistency

Garget. al. ECCV 16
Godard et. al,, Zhou et. al., CVPR 17



3D from Geometric Consistency

Space Carving, Multi-view Stereo, Multi-view Reconstruction
LAy
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NIPS 16

Garget. al. ECCV 16
Godard et. al,, Zhou et. al., CVPR 17



Learning via Geometric Consistency

CNN

Input Image l
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Observation O Geometric
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Learning via Geometric Consistency
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View Consistency as Ray Consistency

LA gl )



View Consistency as

Ray Consistency



View Consistency as Ray Consistency
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View Consistency as Ray Consistency
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View Consistency as

Ray Consistency
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View Consistency as
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Differentiable Ray Consistency
A )
il
[( , B )
3D Shape : x Ray r Observation : oy

passing Nevoxels  (Depth / foreground/
color etc.)
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D]

erentiable Ray Consistency

Event Probabilities

(where can the ray stop ?)
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Event Probabilities

(where can the ray stop ?)
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Event Probabilities

(where can the ray stop ?)



Di
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Event Probabilities Event Costs

(where can the ray stop ?) (how ‘bad’ is stopping here ?)
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Event Probabilities Event Costs

(where can the ray stop ?) (how ‘bad’ is stopping here ?)



Differentiable Ray Consistency

Event Probabilities Event Costs

(where can the ray stop ?) (how ‘bad’ is stopping here ?)



Differentiable Ray Consistency

B ,

Event Probabilities Event Costs

(where can the ray stop ?) (how ‘bad’ is stopping here ?)




Probabilistic

Ray Tracing

Possible Events



Probabilistic Ray Tracing

—

Event : z, =1
p(zr =1) =(1 — x7)

Possible Events



Probabilistic

Ray Tracing

|

|

| Event : 2z, =1 Event : z, = 2
p(zr =1) =(1 — z7) p(zr =2) =27(1 — x3)

Possible Events



Probabilistic
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Event : z, =3

p(zr = 3) = 173(1 — x3)

Possible Events
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Probabilistic

Ray Tracing

1—1
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Probabilistic
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Probabilistic

Ray Tracing
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Probabilistic

Ray Tracing
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Differentiable Ray Consistency

B ,

Event Probabilities Event Costs

(where can the ray stop ?) (how ‘bad’ is stopping here ?)




Differentiable Ray Consistency

B ,

Event Probabilities Event Costs

(where can the ray stop ?) (how ‘bad’ is stopping here ?)
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(where can the ray stop ?) (how ‘bad’ is stopping here ?)
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(where can the ray stop ?) (how ‘bad’ is stopping here ?)




Fvent Costs

r How inconsistent is each event w.rt oy ?



Fvent Costs

—

Event : 2z, =1
High cost

r How inconsistent is each event w.rt oy ?



Fvent Costs

Event Dz =1 Event : z, =5
High cost Medium Cost

r How inconsistent is each event w.rt oy ?



Fvent Costs

Event Dz =1 Event : z, =5
High cost Medium Cost

Event : z, = 10
Low Cost

r How inconsistent is each event w.rt oy ?



Fvent Costs

Event c 2 =1 Event|: 2z, =5
High cost Medium Cost
e ——)
Event : z, = 10 Event : z, = N, +1
Low Cost High Cost

r How inconsistent is each event w.rt oy ?



Fvent Costs

PP () = |df — d,

/7’3



Fvent Costs

PPt (i) = |di —|d]
RObserved
r Depth




Fvent Costs
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Fvent Costs
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Event Probabilities Event Costs

(where can the ray stop ?) (how ‘bad’ is stopping here ?)
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Event Probabilities Event Costs

(where can the ray stop ?) (how ‘bad’ is stopping here ?)



Mask Observation

Event Probabilities

(where can the ray stop ?)

Event Costs

(how ‘bad’ is stopping here ?)
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Color Observation
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Event Probabilities

(where can the ray stop ?)
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Event Costs

(how ‘bad’ is stopping here ?)
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Color Observation
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Event Probabilities
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Per-voxel color
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(how ‘bad’ is stopping here ?)



Learning via Geometric Consistency
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Input Image

Geomedtric
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Learning Single-view Reconstruction



Learning Single-view Reconstruction
ShapeNet

higke &
1 j
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Supervision : Pose + Depth/Mask




Experiments - ShapeNet




Experiments - ShapeNet




Experiments - ShapeNet
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Experiments - ShapeNet




Experiments - ShapeNet




Experiments - ShapeNet




Learning Single-view Reconstruction
ShapeNet

higke &
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Supervision : Pose + Depth/Mask




Learning Single-view Reconstruction
ShapeNet PASCAL VOC
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-xperiments - PASCAL VOC
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-xperiments - PASCAL VOC

Input



-xperiments - PASCAL VOC

CSDM
(Kar et. al.)

Input



-xperiments - PASCAL VOC
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-xperiments - PASCAL VOC

CSDM DRC
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-xperiments - PASCAL VOC

CSDM DRC DRC
D .
nput (Kar et. al.) (Pascal) SNet3 (Joint)



-xperiments - PASCAL VOC

CSDM DRC DRC ‘Ground-
N D .
nput (Kar et. al.) (Pascal) SNet3 (Joint) Truth’



-xperiments - PASCAL VOC
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-xperiments - PASCAL VOC
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-xperiments - PASCAL VOC
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-xperiments - PASCAL VOC
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Prediction ‘Ground-truth’



-xperiments - PASCAL VOC

Input Prediction ‘Ground-truth’

Collecting ‘ground-truth’ 3D is hard !



Learning Single-view Reconstruction
ShapeNet PASCAL VOC
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Learning Single-view Reconstruction
ShapeNet PASCAL VOC
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| Supervision : Pose + Mask

Supervision : Pose + Depth/Mask
Cityscapes
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Supervision : Ego-motion,
Depth, Semantics



Learning Single-view Reconstruction
ShapeNet PASCAL VOC

1
!

| Supervision : Pose + Mask

Supervision : Pose + Depth/Mask
Cityscapes ShapeNet (color supervised)
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Supervision : Ego-motion,
Depth, Semantics

Supervision : Pose + RGB



Conclusion
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Conclusion

- Learning 3D via Geometric Consistency
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Conclusion

Learning 3D via Geometric Consistency
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Differentiable Ray Consistency Formulation
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Conclusion

Learning 3D via Geometric Consistency

A5~ [ B

Differentiable Ray Consistency Formulation

(57 L) . - B ,

Event Probabilities Event Costs

Applications across scenarios
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Thank You

Code : https://github.com/shubhtuls/drc



https://github.com/shubhtuls/drc
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