

CSE291-C00 Laplacian Operator

Instructor: Hao Su

Famous Motivation

CAN ONE HEAR THE SHAPE OF A DRUM?

MARK KAC, The Rockefeller University, New York To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday

> "La Physique ne nous donne pas seulement l'occasion de résoudre des problèmes . . . , elle nous fait presentir la solution." H. POINCARÉ.

Before I explain the title and introduce the theme of the lecture I should like to state that my presentation will be more in the nature of a leisurely excursion than of an organized tour. It will not be my purpose to reach a specified destination at a scheduled time. Rather I should like to allow myself on many occasions the luxury of stopping and looking around. So much effort is being spent on streamlining mathematics and in rendering it more efficient, that a solitary transgression against the trend could perhaps be forgiven.

.

An Experiment

Unreasonable to Ask?

Spoiler Alert

- Has to be a weird drum
- Spectrum tells you a lot!

Rough Intuition

http://pngimg.com/upload/hammer_PNG3886.png

You can learn a lot about a shape by hitting it (lightly) with a hammer!

Spectral Geometry

What can you learn about its shape from vibration frequencies and oscillation patterns?

Objectives

- Make "vibration modes" more precise
- Progressively more complicated domains
 - Line segments
 - Regions in
 - Graphs
 - Surfaces/manifolds
- Next time: Discretization, applications

Review: Vector Spaces and Linear Operators

$\mathcal{L}[\vec{x} + \vec{y}] = \mathcal{L}[\vec{x}] + \mathcal{L}[\vec{y}]$ $\mathcal{L}[c\vec{x}] = c\mathcal{L}[\vec{x}]$

In Finite Dimensions

Review:

Recall: Spectral Theorems in Linear Algebra

Theorem. Suppose A is Hermitian. Then, A has an orthogonal basis of eigenvectors. If A is positive definite, the corresponding eigenvalues are nonnegative.

Minus Second Derivative Operator

"Dirichlet boundary conditions"

$$\{f(\cdot) \in C^{\infty}([a,b]) : f(0) = f(\ell) = 0\}$$
$$\mathcal{L}[f(\cdot)] := -f''(\cdot)$$

Eigenfunctions:
$$f_k(x) = \sin\left(\frac{\pi kx}{\ell}\right), \quad \lambda_k = \left(\frac{\pi k}{\ell}\right)^2$$

Physical Intuition: Wave Equation

Observation

$\{f(\cdot) \in C^{\infty}([a,b]) : f(0) = f(\ell) = 0\}$

$$\begin{aligned} \langle f, \mathcal{L}[f] \rangle &= -\int_0^\ell f(x) f''(x) \, dx \\ &= -[f(x)f'(x)]_0^\ell + \underbrace{\int_0^\ell f'(x)^2 \, dx}_{\geq 0} \end{aligned}$$

Hilbert-Schmidt Theorem

Theorem. Let $H \neq 0$ be an infinite-dimensional, separable Hilbert space and let $K \in L(H)$ be compact and self-adjoint. Then, there exists a countable orthonormal basis of H consisting of eigenvectors of K.

Hilbert space: Space with inner product Separable: Admits countable, dense subset Compact operator: Bounded sets to relatively compact sets Self-adjoint: $\langle Kv, w \rangle = \langle v, Kw \rangle$

https://www.math.ku.edu/~matjohn/Teaching/S16/Math951/HilbertSchmidt.pdf

Can you hear the length of an interval?

Yes!

Planar Region

Typical Notation

http://www.gamasutra.com/db_area/images/feature/4164/figy.png, https://en.wikipedia.org/wiki/Gradient

Positivity, Self-Adjointness

$$\{f(\cdot) \in C^{\infty}(\Omega) : f|_{\partial \Omega} \equiv 0\}$$
 "Dirichlet boundary conditions"

$$\mathcal{L}[f] := -\Delta f$$
$$\langle f, g \rangle := \int_{\Omega} f(x)g(x) \, dx$$

On board: I. Positive: $\langle f, \mathcal{L}[f] \rangle \geq 0$

2. Self-adjoint: $\langle f, \mathcal{L}[g]
angle = \langle \mathcal{L}[f], g
angle$

Proof

Proof of 1
$$\langle f, \mathscr{L}[f] \rangle = \int_{\Omega} f(-\nabla \cdot \nabla f) \, dV = \int_{\partial \Omega} f(-\nabla f \cdot \overrightarrow{n}) \, dS + \int_{\Omega} \nabla f \cdot \nabla f \, dV = \int_{\Omega} \nabla f \cdot \nabla f \, dV \ge 0$$

where the second equality follows from Green formula, and the third equality follows from $f|_{\partial\Omega} \equiv 0$

Proof of 2

$$\langle f, \mathscr{L}[g] \rangle = \int_{\Omega} f(-\nabla \cdot \nabla g) \, dV = \int_{\partial \Omega} f(-\nabla g \cdot \vec{n}) \, dS + \int_{\Omega} \nabla f \cdot \nabla g \, dV = \int_{\Omega} \nabla f \cdot \nabla g \, dV$$

where the second equality follows from Green formula, and the third equality follows
from $f|_{\partial \Omega} \equiv 0$
Similarly, $\langle \mathscr{L}[f], g \rangle = \int_{\Omega} \nabla g \cdot \nabla f \, dV$

It also shows
$$\langle f, \mathscr{L}[g] \rangle = \int_{\Omega} \nabla f \cdot \nabla g \, dV$$

Dirichlet Energy

Images made by E.Vouga

Proof

We use variational method to derive.

Lagrangian:
$$\mathbb{L}[f] = \frac{1}{2} \int \langle \nabla f, \nabla f \rangle + \int_{\partial \Omega} \lambda(x)(f(x) - g(x))$$

So

$$\delta \mathbb{L}[f] = \mathbb{L}[f + \delta h] - \mathbb{L}[f] = \int_{\Omega} \langle \nabla f, \nabla \delta h \rangle + \int_{\partial \Omega} \lambda(x) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla \cdot \nabla f) + \int_{\partial \Omega} \lambda(x) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) + \int_{\partial \Omega} \delta h(x) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) - \int_{\Omega} \delta h(\nabla f \cdot \nabla f) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) \delta h(x) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) \delta h(\nabla f \cdot \nabla f) \delta h(x) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) \delta h(\nabla f \cdot \nabla f) \delta h(x) \delta h(x) \delta h(x) \delta h(x) = \int_{\partial \Omega} \delta h(\nabla f \cdot \overrightarrow{n}) \delta h(\nabla f \cdot \nabla f) \delta h(x) \delta h(x)$$

In the interior of Ω , $\Delta f \equiv 0$ so that $\delta \mathbb{L}[f] = 0$ for any δh

Harmonic Functions

Mean value property: $f(x) = \frac{1}{\pi r^2} \int_{B_r(x)} f(y) \, dA$

Images made by E.Vouga

Intrinsic Operator

Images made by E.Vouga

Coordinate-independent (important!)

Another Interpretation of Eigenfunctions

Find critical points of E[f]s.t. $\int_{\Omega} f^2 = 1$

http://www.math.udel.edu/~driscoll/research/gww1-4.gif

Small eigenvalue: Small Dirichlet Energy

Basic Setup

• Function:

One value per vertex

What is the Dirichlet energy of a function on a graph?

Differencing Operator

Orient edges arbitrarily

Dirichlet Energy on a Graph

$$D_{ev} := \begin{cases} -1 & \text{if } E_{e1} = v \\ 1 & \text{if } E_{e2} = v \\ 0 & \text{otherwise} \end{cases}$$

$$E[f] := \|Df\|_2^2 = \sum_{(v,w)\in E} (f_v - f_w)^2$$

(Unweighted) Graph Laplacian
Symmetric
Positive definite

$$E[f] = \|Df\|_2^2 = f^{\top}(D^{\top}D)f := f^{\top}Lf$$

$$L_{vw} = A - D = \begin{cases} 1 & \text{if } v \sim w \\ -\text{degree}(v) & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$$

Labeled graph	Degree matrix						Adjacency matrix								Laplacian matrix						
	(2	0	0	0	0	0)		(0	1	0	0	1	0)	1	$^{\prime}$ 2	-1	0	0	-1	0)	
Θ	0	3	0	0	0	0		1	0	1	0	1	0		-1	3	-1	0	-1	0	
(4)-02-0	0	0	2	0	0	0		0	1	0	1	0	0		0	-1	2	-1	0	0	
IL	0	0	0	3	0	0		0	0	1	0	1	1		0	0	-1	3	-1	-1	
(3)-(2)	0	0	0	0	3	0		1	1	0	1	0	0		-1	-1	0	-1	3	0	
	0/	0	0	0	0	1/	'	0/	0	0	1	0	0/	1	0	0	0	-1	0	1/	

Second-Smallest Eigenvector

Fiedler vector ("algebraic connectivity")

Mean Value Property

$$L_{vw} = A - D = \begin{cases} 1 & \text{if } v \sim w \\ -\text{degree}(v) & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$$

$$(Lx)_v = 0$$

Value at v is average of neighboring values

For More Information...

Number 92

Graph Laplacian encodes lots of information!

Spectral Graph Theory

Fan R. K. Chung

Example: Kirchoff's Theorem Number of spanning trees equals

 $\frac{1}{n}\lambda_2\lambda_3\cdots\lambda_n$

American Mathematical Society with support from the National Science Foundation

Hear the Shape of a Graph?

Recall: Scalar Functions

http://www.ieeta.pt/polymeco/Screenshots/PolyMeCo_OneView.jpg

Map points to real numbers

Gradient Vector Field

$$\begin{array}{l} \nabla f: S \to \mathbb{R}^3 \text{ with} \\ \left\{ \begin{array}{l} \langle (\nabla f)(p), v \rangle = (df)_p(v), v \in T_p S \\ \langle (\nabla f)(p), N(p) \rangle = 0 \end{array} \right. \end{array}$$

Dirichlet Energy

Decreasing E

$$E[f] := \int_S \|\nabla f\|_2^2 \, dA$$

Images made by E.Vouga

From Inner Product to Operator

$$\langle f,g \rangle_{\Delta} := \int_{S} \nabla f(x) \cdot \nabla g(x) \, dA$$

 $:= \langle f, \Delta g \rangle$ Implies

On the board: "Motivation" from finite-dimensional linear algebra.

Laplace-Beltrami operator

What is Divergence?

$$V: S \to \mathbb{R}^3$$
 where $V(p) \in T_p S$
 $dV_p: T_p S \to \mathbb{R}^3$
 $\{e_1, e_2\} \subset T_p S$ orthonormal basis

$$(\nabla \cdot V)_p := \sum_{i=1}^2 \langle e_i, dV(e_i) \rangle_p$$

Things we should check (but probably won't):

• Independent of choice of basis

Eigenfunctions

 $\Delta \psi_i = \lambda_i \psi_i$

Vibration modes of surface (not volume!)

Practical Application

https://www.youtube.com/watch?v=3uMZzVvnSiU

Nodal Domains

Theorem (Courant). The *n*-th eigenfunction of the Dirichlet boundary value problem has at most *n* nodal domains.

Additional Connection to Physics

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

Heat equation

Spherical Harmonics

https://en.wikipedia.org/wiki/Spherical_harmonics

Laplacian of xyz function

