
Curvature



Weingarten Map
• The Weingarten map dN is the 

differential of the Gauss map N

• At each point, tells us the 
change in the normal vector 
along any given direction X

• Since change in unit normal 
cannot have any component in 
the normal direction, dN(X) is 
always tangent to the surface

• Can also think of it as a vector 
tangent to the unit sphere S2
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Q: Why is dN(Y) “flipped”?



Weingarten Map—Example
• Recall that for the sphere, N = -f.  Hence, Weingarten map dN is just -df :

Key idea: computing the Weingarten map is no different 
from computing the differential of a surface.



Normal Curvature
• For curves, curvature was the rate of change of the tangent; for immersed surfaces, 

we’ll instead consider how quickly the normal is changing.*

*For plane curves, what would happen if we instead considered change in N?

• In particular, normal curvature is rate at 
which normal is bending along a given 
tangent direction:

• Equivalent to intersecting surface with 
normal-tangent plane and measuring the 
usual curvature of a plane curve



Normal Curvature—Example
Consider a parameterized cylinder:

Q: Does this result make sense geometrically?



Principal Curvature
• Among all directions X, there are two principal directions X1, X2 where 

normal curvature has minimum/maximum value (respectively)

• Corresponding normal curvatures are the principal curvatures

• Two critical facts*:
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Where do these relationships come from?



Shape Operator
• The change in the normal N is always tangent to the surface

• Must therefore be some linear map S from tangent vectors to tangent 
vectors, called the shape operator, such that

• Principal directions are the eigenvectors of S

• Principal curvatures are eigenvalues of S

• Note: S is not a symmetric matrix!  Hence, eigenvectors are not 
orthogonal in R2; only orthogonal with respect to induced metric g.



Shape Operator—Example
Consider a nonstandard parameterization of the cylinder (sheared along z):

Key observation: principal directions orthogonal only in R3.



Umbilic Points
• Points where principal curvatures are equal are called umbilic points

• Principal directions are not uniquely determined here

• What happens to the shape operator S?

• May still have full rank!

• Just have repeated eigenvalues, 2-dim. eigenspace

r

Could still of course choose (arbitrarily) an orthonormal pair X1, X2…



Principal Curvature Nets
• Walking along principal direction field yields principal curvature lines

• Collection of all such lines is called the principal curvature network



Separatrices and Spirals
• If we walk along a principal curvature line, where do we end up?
• Sometimes, a curvature line terminates at an umbilic point in both directions; these so-

called separatrices (can) split network into regular patches.
• Other times, we make a closed loop.  More often, however, behavior is not so nice!



Application—Quad Remeshing
• Recent approach to meshing: construct net roughly aligned with 

principal curvature—but with separatrices & loops, not spirals.

from Knöppel, Crane, Pinkall, Schröder, “Stripe Patterns on Surfaces”



Gaussian and Mean Curvature
Gaussian and mean curvature also fully describe local bending:

*Warning: another common convention is to omit the factor of 1/2

“developable”

“minimal”



Total Mean Curvature?
Theorem (Minkowski): for a regular closed embedded surface,

Q: When do we get equality?
A: For a sphere.



Second Fundamental Form
• Second fundamental form is 

closely related to principal 
curvature

• Can also be viewed as change in 
first fundamental form under 
motion in normal direction

• Why “fundamental?”First & 
second fundamental forms play 
role in important theorem…



Fundamental Theorem of Surfaces
• Fact. Two surfaces in R3 are congruent if and only if they have the same 

first and second fundamental forms

• …However, not every pair of bilinear forms I, II on a domain U 
describes a valid surface—must satisfy the Gauss Codazzi equations

• Analogous to fundamental theorem of plane curves: determined up to 
rigid motion by curvature

• …However, for closed curves not every curvature function is valid (e.g., 
must integrate to 2k")
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