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Defining “Curve”

A function?



Subtlety

Y3 (t) - (07 O)

Not a curve



Graphs of Smooth Functions




Graphs of Smooth Functions

B! f(t) — (t27t3)

How to ensure the smoothness of a curve?

http://en.wikipedia.org/wiki/Singular_point_of_a_curve



Geometry of a Curve

A curve is a

set of points
with certain properties.

It is not a function.



Geometric Definition

Set of points that locally looks like a line.



Differential Geometry Definition




Parameterized Curve

Now this is OK!

\

v(t) : (a,b) = R?




Some Vocabulary

* Trace of parameterized curve

{7v(t) :t € (a,b)}

» Component functions

() = (2(1),y(t), 2(1))



Change of Parameter

b (g(t) =vogl(t)

Geometric measurements should be

Invariant
to changes of parameter.




Dependence of Velocity

On the board:
Effect on velocity and acceleration.



[

Arc Length

v (t)

dt



Parameterization by Arc Length

/ Iy ()] dt

t(s) := inverse of s(t)

7(s) = y(x(s))

Constant-speed parameterization



Moving Frame in 2D




Philosophical Point

Differential geometry “should” be
coordinate-invariant.

Referring to x and y is a hack!

(but sometimes convenient...)



How do you
characterize shape
without coordinates?



Turtles All The Way Down

On the board:

Use coordinates from the curve to
express its shape!



Radius of Curvature

https://www.quora.com/What-is-the-base-difference-between-radius-of-curvature-and-radius-of-gyration



Fundamental theorem of the
local theory of plane curves:

k(s) characterizes a planar curve
up to rigid motion.



Fundamental theorem of the
local theory of plane curves:

k(s) characterizes a planar curve
up to rigid motion.

Statement shorter than the name!



Frenet Frame: Curves in

e Binormal:

* Curvature: In-plane motion
 Torsion: Out-of-plane motion




Fundamental theorem of the
local theory of space curves:

Curvature and torsion
characterize a 3D curve up to
rigid motion.



Aside: Generalized Frenet Frame

v(s) : R —- R"

o\ 0w 0\ (e
i 62(8) B _Xl(S) 62(8)
ds ; B : ;

. - O n—l(S) .

\en(s)/ \ 0 —Xn-1(5) ! 0 / \en(s))

Suspicion: Application to time series analysis? ML?
C.Jordan, 1874

Gram-Schmidt on first n derivatives



What do these

calculations look like in
software!



Old-School Approach

F(0,1,1)
F(0,0,1)

£°(0,0,0) = f(0) F(1,1,1) = f(1)

Piecewise smooth approximations



Question

What is the arc length of a
cubic Bezier curve?

/ Iy (8)]] dt



Question

What is the arc length of a
cubic Bezier curve?

/ Iy (8)]] dt

ot known in closed orm




Sad fact:
Closed-form

expressions rarely exist.
When they do exist, they
usually are messy.



Only Approximations Anyway

{Bézier curves} C {v:R — R’}



Equally Reasonable Approximation

Piecewise linear



Big Problem

Boring differential structure



Finite Difference Approach

1

fi(x) = v

f(z+h) = f(z)]

THEOREM: As , [insert statement].



Reality Check



Two Key Considerations

» Convergence to continuous theory

 Discrete behavior



Goal

Examine discrete theories of
differentiable curves.



Goal

Examine discrete theories of
differentiable curves.



Gauss Map

http://mesh.brown.edu/3DPGP-2007/pdfs/sg06-courseO | .pdf



Signed Curvature on Plane Curves

T(s) = (cosf(s),sinf(s))




Turning Numbers




Recovering Theta



Turning Number Theorem

k(s)ds = 2mk

A “global” theorem!




Discrete Gauss Map

http://mesh.brown.edu/3DPGP-2007/pdfs/sg06-courseO | .pdf



Discrete Gauss Map

http://mesh.brown.edu/3DPGP-2007/pdfs/sg06-courseO | .pdf



Discrete Gauss Map

http://mesh.brown.edu/3DPGP-2007/pdfs/sg06-courseO | .pdf



Key Observation




What’s Going On?

Total change in curvature



What’s Going On?

Total change in curvature



What’s Going On?

' 0
 — dS ~
/F/{ ) }& b1 + 05

Total change in curvature



Interesting Distinction

K1 # K2
K1 Ko

0 0

Same integrated curvature



Interesting Distinction

K1 # K2

Same integrated curvature



What’s Going On?

Total change in curvature



Discrete Turning Angle Theorem




Alternative Definition

— kN

decreases

length the
fastest.




Discrete Case

0
. Homavori




For Small

]
(
N T

-

/ L A A
http://en.wikipedia.org/wiki/Taylor_series

Same behavior in the limit




Remaining Question

Does discrete curvature
converge in limit?
Veq!



Remaining Question

Questions:

* Type of convergence!
* Sampling?

* Class of curves?

Does discrete curvature
converge in limit?
Veq!



Discrete Differential Geometry

* Different discrete behavior

* Same convergence



Next

st

http://www.grasshopper3d.com/forum/topics/offseting-3d-curves-component

Curves in 3D



Frenet Frame



Application

NMR scanner Kinked alpha helix

Structure Determination of Membrane Proteins Using Discrete Frenet Frame
and Solid State NMR Restraints
Achuthan and Quine
Discrete Mathematics and its Applications, ed. M. Sethumadhavan (2006)



Potential Discretization

T = Pj+1 — Py

Ipj+1 — 5l
Bj — tj—l X tj
Nj — bj X tj

Discrete Frenet frame

Discrete frame introduced in:

The resultant electric moment of complex molecules
Eyring, Physical Review, 39(4):7/46—/48, 1932.



Frenet Frame: Issue

o N o
3 =S



Segments Not Always Enough

Discrete Elastic Rods

Bergou, Wardetzky, Robinson, Audoly, and Grinspun
SIGGRAPH 2008

http://www.cs.columbia.edu/cg/rods/



Simulation Goal

http://www.cs.columbia.edu/cg/rods/



Adapted Framed Curve

http://www.cs.columbia.edu/cg/rods/

Normal part encodes twist



Bending Energy

1
Ebend(F) L= 5 / sz ds
I’

Punish turning the steering wheel

kN =T
— (T/ : T)T -+ (T/ ° ml)ml —+ (T/ ' mg)mg
— (T/ ' ml)ml -+ (T/ ' mg)mg

= W1Mmi1 + WoMo



Bending Energy

1
Ebend(F) = 5 / a(w% —I—wg) ds
I'

Punish turning the steering wheel

kN =T
— (T/ : T)T -+ (T/ ° ml)ml —+ (T/ ' m2)m2
— (T/ ' ml)ml -+ (T/ ' mg)mg

= W1Mmi1 + WoMo



Twisting Energy

1
B (L) i= 5 [ pm? ds
I

Punish non-tangent change in material frame

/
m = 1my - Mo
d /

= —(m1 - m2) — mq - M5

dt

/



Twisting Energy

1
B (L) i= 5 [ pm? ds
I

Punish non-tangent change in material frame

/
m = 1my - Mo

d /
= —(m1 - m2) — mq - M5

dt

/
= —MmMq - m2 &Swapping and does not
affect !



Which Basis to Use

THERE IS MORE THAN ONE WAY TO FRAME A CURVE
RICHARD L. BISHOP

The Frenet frame of a 3-times continuously differentiable (that is, C3®) non-
degenerate curve in euclidean space has long been the standard vehicle for analysing
properties of the curve invariant under euclidean motions. For arbitrary moving
frames, that is, orthonormal basis fields, we can express the derivatives of the frame
with respect to the curve parameter in terms of the frame itself, and due to ortho-
normality the coefficient matrix is always skew-symmetric. Thus it generally has three
nonzero entries. The Frenet frame gains part of its special significance from the fact
that one of the three derivatives is always zero. Another feature of the Frenet frame
is that it is adapted to the curve: the members are either tangent to or perpendi

to the curve. It is the purpose of this paper to show that there are other frames
which have these same advantages and to compare them with the Frenet frame

1. Relatively parallel fields. We say that a normal vector field M along a curve
is relatively parallel if its derivative is tangential. Such a field turns only whatever
amount is necessary for it to remain normal, so it is as close to being parallel as

possible without losing normality. Since its derivative is perpendicular to it, a rel-
atively parallel normal field has constant length. Such fields occur classically in




Curve-Angle Representation

ucosf +vsinb

m1

mo = —usinf + vcosb

Etwist(r) . — %/Fﬁ(el)Q dS

Degrees of freedom for elastic energy:
Shape of curve
Twist angle
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http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg
http://wwwi.stat.washington.edu/wxs/images/BUNMID.gif

Surfaces



