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Generative Model

» Generator
 Latent Space to image space
* Minimize the gap between P, and P.

* Discriminator
« Maximize

L(D, go) = Exnp, [log D(z)] + Esnp, [log(1 — D(z))]
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Generative Model

» GAN suffered from mode collapse
« KLD is asymmetric, unbalanced penalty for
Generator when P. ->0
 Gradient Vanishing:

« JSD will be a constant when two distributions are
“far away”
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Generative Model

» GAN suffered from mode collapse
« KLD is asymmetric, unbalanced penalty for
Generator when P. ->0
 Gradient Vanishing:
« JSD will be a constant when two distributions are
“far away”
« WGAN
* Wasserstein Distance is better
* AImost smooth and differentiable everywhere
 Better estimation as the distance of distribution
* Closely related to optimal transport theory
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Optimal Transport Theory

* Monge’s Formulation of Wasserstein distance

W) = min { [ el T@)dn(o) : Tyu= v

T X—=Y

* T here is a Measure-preserving Map
« Suppose T: X -> Y, as a measure-preserving map

p(x)de = v(T'(x))dT'(z)
« We have

det(DT(x)) = 5(1?()37)
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Optimal Transportation Theory

« Kantorovich’s Approach
* If there is a joint measure

p(A X Y) = u(A), p(X x B) = v(B)

We(p, v) := min { / c(z,y)dp(x,y) : Tapp = p, Typp = l/}
P XxY

* |t is a relaxation of Monge’s formulation
 continuous distribution (\mu is abs. continuous
measure on X)
* And L1, L2 norm is convex. So Monge is OK!
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Kantorovich Dual Formulation

o Still far away from the GAN’s min-max formulation

« Consider the dual problem of Kantorovich’s
formulation!

* Primal:  rp )= min, / o(z,y)dy (@, y)
XxY

s.t. /Y dy(xz,y) = p(x), /X dy(z,y) = q(y)

v(z,y) >0
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Kantorovich Dual Formulation

o Still far away from the GAN’s min-max formulation

« Consider the dual problem of Kantorovich’s
formulation!

* Primal:  rp )= min, / o(z,y)dy (@, y)
XxY

s.t. /Y dy(xz,y) = p(x), /X dy(z,y) = q(y)
Y(z,y) >0

e Dual:

DP(p,v) = maxe, /gb Ydp(x /z/)(y dv(y
s.t. d(x) +Y(y) <c(z,y), V(zr,y)e X xY
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Kantorovich Dual Formulation (cont.)

in c(z,y)dy(z,y)
‘YGH(X"Y) /X XY

=infiem+(x,y) /

X XY

= nfiem+(x,y) /

X XY

00, otherwise

c(z, y)dy(z,y) + { 0.7(@.y) € 11X, ¥)

C(JS,y)dv(x,y)+Supgo,w/X¢dU+/ywdv—/X (o +)dvy(z,y)

xXY

:infveMﬂx.Y)suzl,o,w/XsodU+/Y¢dv+/X Y(C(I,y)—@(m)—@b(y))dv(x,y)

iNfySupy > SUPy, yinfy

> SUPy i frerr (X.1) /X pdu + /Y el + /X (e, y) — (@) — V(y))dr(z,y)

xY
Zsum,w/deU+/YwdvﬂnfveMﬂx,Y)/X Y(C(I,y)—@(m)—w(y))dv(m,y)

= Supy .y /X pdu + /Y Vdv + { 0,c(z,y) = o(x) + (y)

-00, otherwise
= sup%w/ godu+/ Ydv
X Y
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Kantorovich Dual Formulation (cont.)

* The Dual Problem:
We(p,v) = Igng{/ fw )dv(y) : @(x) + ¥ (y) < e, y)}

e Define c-Transform: ¢"(v) =;gf (c(z,y) — o(x))
 If a function has c-transform, then it is c-concave

 How can we guarantee the equality?

W v) = mgX{ | e@into)+ [ soc(y)d'/(y)}
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Kantorovich Dual Formulation (cont.)

* The optimality gap between primal and dual

N fySUPy = SUP, N fry
« Kantorovich proved that, if cost function is bounded by

some 1-Lipschitz functions, supremum of the dual is
equals to the infimum of primal

Theorem 1.29 (duality). Let p,v € R and c: R" x R" — R continuous and bouned below
such that
c(x,y) < a(x) +b(y)

for some a € LY (u) and b € L'(v). Then the minimum of the Kantorovich problem equals
the supremum in the dual formulation and this supremum is attained by some couple (@, °+)
with ¢ a c-concave function.

Fangchen Liu, Zhiao Huang Lecture 18 -11




Revisit Wasserstein GAN

* |f the L-1 transportation cost is c(z,y) = [z — y|
« We have ¥ = —¢
* The objective for Discriminator

A max{ [ e@in) - [ w(y)dl/(y)}

P

* Note that the Kantorovich’s potential should be 1-
Lipsitz, so they do weight clipping
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Brenier’s Theorem

 What if we use L-2 transportation cost?

Theorem 3.5 (Brenier[S]) Suppose X and Y are the Euclidean space R", and the transportation cost is
the quadratic Euclidean distance c(x,y) = |x — y|% If u is absolutely continuous and . and v have finite
second order moments, then there exists a convex function u : X — R, its gradient map Vu gives the
solution to the Monge’s problem, where w is called Brenier’s potential. Furthermore, the optimal mass
transportation map is unique.

« Gradient of a convex scalar function: curl free
» Based on the properties of measure-preserving map,

we have
0*u ()
det ((’9@8:@-) (x) =
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Brenier’s Potential

* Better solutions than compute the Hessian?
* Yes!
« Consider a point (zg,yo) , under the transport map
from X ->Y
« By definition:  ¢“(vo) = infa ¢z, y0) — ()
» Take the gradient:

Vp(zo) = Vae(xo,y0) = VR(zo — yo).

* Here we assume the cost c(z,y) = h(z —y) Is strictly
convex with h

 Then we will have
yo = x0 — (Vh) 1 (Ve(z))
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Brenier’s Potential
* Replace (xq yo) with (x, T(x)):

When ¢(z,y) = 3|z — y|?, we have
2
T(e) =2~ V(@) =V (5 - ¢(0)) = Vulz)

» Which implies

m?

u(z) = - — ()

* That’s the relationship between Brenier’s potential
and Kantorovich’s potential!
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Get Generator Directly

« Optimal discriminator
==> Kantorovich’s potential
==> Brenier’s potential
==> Optimal Transport Map
==> Optimal Generator
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Get Generator Directly

« Optimal discriminator
==> Kantorovich’s potential
==> Brenier’s potential
==> Optimal Transport Map
==> QOptimal Generator
* No adversarial training
* No mode collapse
 Everything is derived from the closed-form solution
of Wasserstein distance
* An optimal solution under this measure
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How to obtain discriminator?

* If cost is L2, Kantorovich’s potential is closely related
to Brenier’s potential, which is know to be convex.

==> Convex Optimization
 Formulation is not clear

AT mgx{ | e@inta) - [ so(y)du(y)}
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How to obtain discriminator?

* If cost is L2, Kantorovich’s potential is closely related
to Brenier’s potential, which is know to be convex.

==> Convex Optimization
 Formulation is not clear

W) = mgx{ | e@inta) - [ so(y)du(y)}

» Get the solution from geometry
* Magical truth: construct a convex polytope with user

prescribed normals and face volumes is equivalent
to solve OTM in L2
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Semi-discrete Optimal Transportation

« Generator is a mapping from a fixed distribution X to
the empirical distribution Y, e.g. the image manifold.

* In practice, the empirical distribution is represented by
a set of data Y1,%2,---, Yk

 Dirac measure

 Total mass
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Geometric View

Monge’s formulation: 7: X —» Y

Metrics: c(z,y) = ||z —yl2

Preimage ot Y; decompose the space X into cells:

W; ={z|T(z) =y;,x € X}

Question:

inf { /X c(a:,T(a:))d,u(az)}
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Voronoi Diagram

» Transport each point to its nearest neighbor!
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Voronoli Diagram is not enough

* In transportation problem, we have constrains on the
mass received by each point Y1,%2,...,Yk

T.(p) =v
1
> (T () = viy) = vi = 5

* The area (mass) of each cell must be the same.

* The optimal transport map may not be Voronoi
Diagram.
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Back to Kantorovich’s potential

- Define Kantorovich’s potential % (y)
Vi = (1)
Y(x) = min c(z,y;) — Vs

1<i<n
* Point x can transport to y when
() +¥(y) = clz, y)
* The optimal transport must be a Power Diagram!
pow(z,y;) = ||z — y[* — ¢
Wi(y) = {z € R"|Vj, pow(z, y;) < pow(z,y;)}

Fangchen Liu, Zhiao Huang Lecture 18 -24



Power Diagram

» Weighted Voronoi diagram (by the distance to the
nearest circle)

pow(z,y;) = ||z — y||* — i

PA‘PB = PT? = d*-r2

Wi(¥) = {z € R"|Vj, pow(z, y;) < pow(z,y;)}
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Power Diagram




Power Diagram

« Optimal transport map can be seen as a power
diagram.

 Given a set of point, how can we find such power
diagram?

* First of all, does a diagram like this exist?
* The set of the points
* The area of the cells
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Hyper-Plane intersection

* It’s well known that the power diagram is equivalent
with hyper-plane intersection

1 1
pow(x,y;) < pow(x,y;) < (T,ys:) + 5(% — |yil®) > (z,y;) + 5(%’ — |y;1%)
_ L
hi — 2(¢z |yz| )
Normal Yi
Hyperplane (@, i) + hs

Hyperplane intersections up(z) = max{(zx,y;) + h;}

Power diagram Wi(h) = {z € R"|up(z) = (x,yi) + hi}
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Hyper-Plane intersection
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Minkowski’s theorem

* Minkowski’s theorem ensures that the polytope with
given normal vectors and face areas exists

 Not useful in our case

(a) Minkowski theorem

Theorem 4.1 (Minkowski) Suppose n1, ..., ny are unit vectors which span R™ and vy, ...,vx > 0 so that
Zle vin; = 0. There exists a compact convex polytope P C R"™ with exactly k codimension-1 faces
F1, ..., Fy so that n; is the outward normal vector to F; and the volume of F; is v;. Furthermore, such P is
unique up to parallel translation.
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Alexandrov’s theorem

» Exactly what we want!

SYNEG

up()

Theorem 4.2 (Alexandrov([2]) Suppose §) is a compact convex polytope with non-empty interior in R",
ni,...,ng C R" ! are distinct k unit vectors, the (n + 1)-th coordinates are negative, and vy, ...,v; > 0
so that Zle v; = vol(Q). Then there exists convex polytope P C R™*! with exact k codimension-1
facesF1, ..., Fy so that n; is the normal vector to F; and the intersection between () and the projection of
F; is with volume v;. Furthermore, such P is unique up to vertical translation.
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Three steps to find the transport map

* How do you find the optimal transport map?

1. Suppose you have found the half-plane
Intersection with Alexandrov’s theorem.

2. Project the polytope to find the power diagram.
3. Use power diagram to find the map.

{id

CDC.TENCENT.COM
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Life can be easier...

« Alexandrov’s proof is non-constructive, so we need

Theorem 4.3 (Gu-Luo-Sun-Yau[12]) Let 2 be a compact convex domain in R", {y1, ..., yx} be a set of
distinct points in R™ and p a probability measure on (). Then for any v, ..., v, > 0 with Zle v; = p(Q),
there exists h = (hq, ..., hi) € RF, unique up to adding a constant (c, ..., c), so that w;(h) = v;, for all i.
The vectors h are exactly maximum points of the concave function

k h k
E(h) =" hvi - /0 S wi(n)dn; (19)

on the open convex set
H = {h € R¥|w;(h) > 0, Vi}.

Furthermore, Vuy minimizes the quadratic cost

| o= T@)Pduta

among all transport maps Ty = v, where the Dirac measure v = Zle Vily,.
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Brenier’s Potential

* In one word, we can find the polytope by maximizing
B(h) = Zf;h - | héwi(n)dm
* And the gradient of up(z) = miax{(a:,yz-) + h;}
Va € W;(h), Vup(x) = y;

IS the transport map.

* This looks familiar to us

Theorem 3.5 (Brenier[S]) Suppose X and Y are the Euclidean space R", and the transportation cost is
the quadratic Euclidean distance c(z,y) = |z — y|%. If p is absolutely continuous and p and v have finite
second order moments, then there exists a convex function u : X — R, its gradient map Vu gives the
solution to the Monge’s problem, where u is called Brenier’s potential. Furthermore, the optimal mass
transportation map is unique.
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Commutative Diagram

Brenier’s potential Y

‘\\ '\\ \\ \‘ ‘
\ \,.‘ ) \ 1 N\ /
\

\
[ ,

Kantorovich’s
potential

Q) 1% Poincare dual 0O 7—
)

Power diagram - Delaunay Triangulation
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Optimization

 Since E is convex, one can find the maximum by
convex optimization

k h k
E(h) = Z hiv; — </0 Zwi(n)dm

VE(h) = (1/1 — 'wl(h), Vo — ’wz(h), cer Gy VU — 'wk(h))T.
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Why

* We now have two ways to do optimal transport
« Kantorovich’s approach
e find ¥(y) to maximize

Bo@) = [ vdu+ | wav

* Brenier’s approach
e find h = (hq,..., h) € R* 10 maximize

The two approaches are equivalent!
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Kantorovich’s dual approach

Y =R Y(y;) = ¥°(2) = min {c(z,y;) — 95}
* Integrate the potential piece by piece:

Bo(w) = [ vdu+ [ wav

k
= /X min {c(z,y;) — ¥;}du + Z%‘Vi
i=1

1<j<k
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| Method

iona

lat

Var

* Transportation cost

1 Y dw;

k
— Zi:
h; t
T

By variational methods, it's easy to show
dC

g
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Integration by parts

. Transportation cost

dC = szdwz:C / Z@Dzdwz

1=1
w k v k k
/ Z wzdwz’ + / Z ’wzdwz — Z wzwz
1=1 1=1 1=1

o |f wz — hi + 1/2|y7;|2 d¢z = dh'
h k
/ Z'widh —f szdwz—l-const
:>/ Zwi(n)dn+2/ C($7yj)d/1’:2¢iwi(¢)—|—00n8t

i=1 j=1"Wi(¥) i=1
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Equivalence
» Put them together

E (Vi — w; c(z,y;)dp.
p(®) = Zw W”;/W)( i)y
k h k
Ep(h) =) hivi — / > wi(n)dn.
1=1 1=1

Lemma 5.2 Let 2 be a compact convex domain in R", {y1, ..., yx} be a set of distinct points in R". Given
. a probability measure on Q), v = Zf=1 V;0y,, With Zle vi = uw(Q). Ifc(z,y) = 1/2|z — y|?, then

1 .
hi = v; — §|yz‘|2, Vi

and
Ep(¢) — Eg(h) = Const
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Summary

* A geometric view of semi-discrete optimal
transportation.

Gptimal Transport \ énvex Geometry \

Kantorovich’s potential

A 4

Power Diagram

a

Brenier’s potential < » Halfplane Intersections
Brenier’s theorem Alexandrov’s theorem
— P

Variational Principles
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