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Review: Optimal Transport

Discrete Kantorovish formulation(Earth mover's distance)

Discrete distributions a € R, b € R. Cost matrix C € R*™.
C;j denotes the unit cost of transporting mass from ith point in a
to jth point in b.

U(a,b) = {P e R?*™:Pl, =a,P"1,=b}

P;; denotes how much mass from ith point in a is transported to
the jth point in b. U(a, b) is all valid transport plans. P is known
as a coupling matrix.

(Discrete) Optimal transport
A transport plan is optimal if it has the lowest cost.

L b) C;P;
c(a, Permgbz ST
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Review: Optimal Transport

Moving mass from 1 distribution to the other.
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Discrete Semidiscrete Continuous
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Review: Optimal Transport

General formulation

Lo )= mn | ebendn(x.y)

Probabilistic interpretation

Le(@.8) = min{B(e(X. V) : X ~ o, ~ 8}

Intuition
Optimal transport gives a distance measure between probability
distributions.
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Wasserstein Distance

A special case of optimal transport. “A natural way to lift ground
distance to distribution distance.”

Definition

Let P,(2) be the set of Borel probability measures with finite pth
moment defined on a given metric space (2,d). The
p-Wasserstein metric Wp, for p > 1, on P,(2) between
distribution 4 and v, is defined as

1
= i P P
Wotpr) = (_min [ ey}t
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1-Wasserstein Distance

Primal Problem

KP(u,v) = mvin /QXQ d(x,y)dy(x,y)

s.t. /Y dy(x,y) = p(x), /X dy(x,y) = q(y)

Y(x,y) >0

Kantorovich-Rubinstein theorem

DP(u,v) = m x)dx —
(1) ¢€Lir?1>((X)/ * /¢ Jax)dx
DP(u,v) = max E
%) el (X) pd(x) — (x)

Llpl(X) = {d) : |¢(X) - (.y)| < d(X,y)},VX,y e X
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1-Wasserstein Distance

1-D: area between CDF.
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Algorithm for Optimal Transport

Discrete problem: linear programming
Can be formulated as a minimum cost maximum flow problem.
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If the distributions are uniform with the same number of elements.
The problem further reduces to a minimum cost bipartite matching.
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Any Questions?
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Drawbacks of other distances

Let X ~ P and Y ~ @ and let the densities be p and g. Assume
X,Y e R4

Other distance functions
> Total Variation: sup, |P(A) — Q(A)| =1 [|p— 4
» Hellinger: /[(v/P — /q)?
> Lo [(p—q)?
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Drawbacks of other distances

Drawbacks

» Provide no information about why the distributions differ
» Problematic when comparing discrete to continuous
» e.g. uniform P on [0,1] and uniform Q on {0,1/N,2/N,...,1}

» Ignore the underlying geometry of the space
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Drawbacks of other distances

Figure: Three densities pl, p2, p3. Each pair has the same distance in
L1, L2, Hellinger etc. But in Wasserstein distance, pl and p2 are close.
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Drawbacks of other distances
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Figure: Top: Some random circles. Bottom left: Euclidean average of the
circles. Bottom right: Wasserstein barycenter.

An Yan, Fanbo Xiang, Yiming Zhang 14 / 53



Drawbacks of other distances

N
L

Figure: Top row: Geodesic path from PO to P1. Bottom row: Euclidean
path from PO to P1.
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Learning Wasserstein Embeddings

Motivation

» Solving LP for computing Wasserstein distance between
discrete distributions (histograms) is super cubic in complexity
» Some approximation techniques
» slicing techniques
> entropic regularization
> stochastic optimization

» However, computing pairwise Wasserstein distances between a
huge number of large distributions (e.g. image collection) or
optimization problems with a lot of Wasserstein distances
(e.g. barycenters) is still intractable.
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Learning Wasserstein Embeddings

ldea
> Learn an embedding where Wasserstein distance is reproduced
by Euclidean norm

» Once the embedding is found, computing distances or solving
problems related to Wasserstein distances can be conducted
extremely fast

» Simultaneously learn the inverse mapping to improve
performance and allow interpretations of the results
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Deep Wasserstein Embedding

X~ Puuu(X)y 'V' ) — P =KL (@(x1)), X;)

+

(op(x) = p(x)P = Wi(x1,%2))?

+

@ | 1) —KL((9(x2)), x2)

» Pre-computed dataset consists of pair of histograms

{x},x?}ic1,..n of dimensionality d and their corresponding

W5 distances {y; = WZ(x},x?*)}ie1...n

» Siasame architecture + Decoder
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Deep Wasserstein Embedding

_' P KL (@(x1)), x1)

(p(x1) = p(x) I = WE(x1, %))

> E;—_/Aﬁz }— P —KL@(x2), %)
X2 ~ Puara (X) J

> Global objective function

min 3 [l60) = 0GR ="+ A X KL x) + KL )
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Deep Wasserstein Embedding

Decoder eases the learning
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—— DWE with AE
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Figure: W2 validation MSE along the number of epochs for the MNIST dataset
(DWE).
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Wasserstein Barycenters

Idea

> An analogy with barycenters in a Euclidean space

T = arg mzin Z aiW(z,z;) ~ ¢(Z ai¢(z:))
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Principal Geodesic Analysis

Idea

» Generalization of PCA

» Find approximated Fréchet mean x = va ¢(x;) and subtract
it to all samples
» Build Vi = span(vy, ..., vk) recusively

U1 = argmax, _; E(”¢($i))2
i=1

n k-1
Vg = argmax, Z ((v-¢($i))2 + Z(”j-¢($i))2)
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Numerical Experiments

MNIST dataset
» MNIST: contains 28 x 28 images from 10 digit classes

» Dataset used: 1 million pairs from 60000 samples with exact
Wasserstein distances
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Numerical Experiments

MNIST dataset

» Computational performance

- MSE=0,407, RelMSE=0.003, Corr=0.995 Method I Wekes |
2 LP network flow (1 CPU) 192
DWE Indep. (1 CPU) 3633
P DWE Pairwise (1 CPU) 213384
[ DWE Indep. (GPU) 233981

K DWE Pairwise (GPU) 10 477 901

S 0 15 20 25 3 B b @
True Wass. ditance.

Figure 2: Prediction performance on the MNIST dataset. (Figure) The test performance are as follows:
MSE=0.41, Relative MSE=0.003 and Correlation=0.995. (Table) Computational performance of W3
and DWE given as average number of 2 computation per seconds for different configurations.

> Interpretation: better suited for mining large scale datasets
and online applications
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Numerical Experiments

MNIST dataset

» Wasserstein Barycenter
» Computed with uniform weights from 1000 samples per class
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Figure 3: Barycenter estimation on each class of the MNIST dataset for squared Euclidean distance
(L2) and Deep Wasserstein Embedding (DWE).
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Numerical Experiments

MNIST dataset

» Principal Geodesic Analysis

Class 0 Class 1 Class 4
L2 DWE L2 DWE 12 DWE
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Figure 4: Principal Geodesic Analysis for classes 0,1 and 4 from the MNIST dataset for squared
Euclidean distance (L2) and Deep Wasserstein Embedding (DWE). For each class and method we
show the variation from the barycenter along one of the first 3 principal modes of variation.
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Numerical Experiments
Google Doodle Dataset
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» Google Doodle: crowd sourced dataset of 50 million drawings

» Dataset used: Three classes, Cat, Crab, and Face, rendered
into 28x28 grayscale images. Draw 1 million pairs and
compute exact Wasserstein distances
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Numerical Experiments

Google Doodle Dataset

» Computational performance

Learn \ Test || CAT | CRAB | FACE | MNIST | [Learn \ Test || CAT | CRAB | FACE | MNIST
CAT 1491 | 1.818 | 1.927 | 12.525 CAT 0.004 | 0.007 | 0.011 | 0.082
CRAB 2.679 | 0918 | 3.510 | 11.750 CRAB 0.009 | 0.004 | 0.018 | 0.075
FACE 4.884 | 4843 | 1.313 | 52.994 FACE 0.018 | 0.024 | 0.008 | 0329
MNIST || 9.776 | 6.689 | 4387 | 0.407 MNIST || 0.028 | 0.030 | 0.026 | 0.003

(a) MSE (b) Relative MSE

Table 1: Cross performance between the DWE embedding learned on each datasets. On each row, we
observe the MSE (table a) and relative MSE (table b) on the test set of each dataset given a DWL
(Cat, Crab, Faces and MNIST).
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Numerical Experiments

Google Doodle Dataset

» Interpolation

» LP solver: 20 sec/interp, noisy

» Regularized Wasserstein barycenter: 4 sec/interp, smooth,
loosing details

» DWE: 4 ms/interp, smooth, looses some details
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Figure 5: Comparison of the interpolation with L2 Euclidean distance (top), LP Wasserstein interpo-
lation (top middle) regularized Wasserstein Barycenter (down middle) and DWE (down).
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Numerical Experiments

Google Doodle Dataset

» Interpolation (more results)
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Figure 8: Interpolation between four samples of each datasets using DWE. (left) cat dataset, (center)
Crab dataset (right) Face dataset.
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Numerical Experiments

Google Doodle Dataset

> Nearest neighbor walk
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Figure 10: Nearest neighbor walk along the 3 datasets when using L2 or DWE for specifying the
neighborhood. (up) Cat dataset, (middle) Crab dataset (down) Face dataset.
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Entropic Regularization

Kantorovish formulation

U(a,b)={P € RT*":P1l,, =a,P"1, =b}

P; ; denotes how much mass from ith point in a is transported to
the jth point in b. U(a, b) is all valid transport plans. P is known
as a coupling matrix.

Entropy
Discrete entropy of a coupling matrix P:

H(P) = — Z P;(log(P;j) — 1)
i

H(P) = —oo if any entry of P is negative or 0.
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Entropic Regularization

property
H is 1-strongly concave:

¥x,y, (VE(x) = V()T (x = y) < [Ix = yll3
Vx, —Hf(x) — I is positive semidefinite
Motivation

Larger H(P) — distribution more uniform.
We can use H to regularize optimal transport.

Lc(a,b) = PerBI(Q,b)<P’ C)

[S(a,b)= min (P,C)— eH(P
c(a,b) Perpjzg7b)< ,C) —eH(P)
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Entropic Regularization
Lc(av b) = Penl}ég,b)“)’ C> - GH(P)
L¢(a,b) is known as the Sinkhorn divergence.

Properties

1. There exists unique solution P..
2. When ¢ — 0, P. — P.
3. When € — 0o, P, — ab” (uniform distribution).

LdAd

Figure 4.1: Impact of ¢ on the optimization of a linear function on the simplex, solving P. =
argminp.y, (C, P) — eH(P) for a varying .
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Entropic Regularization

Proposition (4.3)
Solution to the discrete entropic optimal transport problem

[S(a,b)= min (P,C)— eH(P
c(a,b) Perpjzg’b)< ,C) —eH(P)

is unique and has the form
V(i j) € [n] x [m], Pij = uiK; jv;

or equivalently,
P = diag(u)Kdiag(v)

where
Kij = e %9/ (u,v) € R} x RY
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Entropic Regularization

Sinkhorn iterations
P = diag(u)Kdiag(v)
Adding constraints P1,, = a, PT]l,, = b,
ue (Kv)=a,vo (K'u)=b

This problem is known as “matrix scaling” and can be solved
iteratively:

Sy - @ ey _ b
Kv()’ KTu(i+1)
Note: this algorithm converges but possibly to different values for
different initialization, since (Au,v/\) is also a solution.
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Entropic Regularization

Complexity
Let n = m for simplicity, to achieve approximate transport plan
P € U(a,b) with (P,C) < L¢(a,b) + 7, the time complexity is

O(n?log nT~3)

Remarks
The Sinkhorn iteration approximates optimal transport. Given
enough time, it can give arbitrarily close approximations.
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Any Questions?
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“Size” of Wasserstein space

Question
How well can we embed other spaces into Wasserstein spaces?

Universality
A space is universal if it can embed any finite dimensional metric

space with O(1) distortion.
Wi (1Y) is universal. (Bourgain, 1986)

I is the sequence space consisting of sequences (x,) s.t.

Z\x,,] < 0

n

Or intuitively, the infinite dimensional vector space with finite sum.
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“Size” of Wasserstein space

Open Problem

Is Wi (R¥) universal for some k?

Snowflake Universality
The 6—snowflake of a metric space (Y, dy) is (Y, d?).

1
CWP(R3)(X7 d)'z) =1

However,
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“Size” of Wasserstein space

Open Problem

Is Wi (R¥) universal for some k?

Snowflake Universality
The 6—snowflake of a metric space (Y, dy) is (Y, d?).

1
CWP(R3)(X7 d)'z) =1
However, only for p € (1, 00)

Open Problem

Does it hold for p=17
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“Size” of Wasserstein space

Question
How well can Wasserstein space embed into other spaces?

Result
Embedding Wa(IR3) into L will incur Q(y/log n) distortion.

Intuitively, it is hard to faithfully embed Wasserstein space into
some very large spaces. (Open problem: is this bound tight?)

For more open problems see: Snowflake Universality Of Wasserstein Spaces by Andoni, Naor and Neiman
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Learning Entropic Wasserstein
Embeddings

Motivations

» Embedding in Euclidean space

— Use distances and angles between vectors to encode the levels
of association.
— Bourgain's theorem

(X7d) O(logn) Eg(logzn)

— L, distances ignore the geometry of the distributions.
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Learning Entropic Wasserstein
Embeddings

Motivations

> Wasserstein space

— A ’large’ space: Many spaces can embed into Wasserstein
spaces with low distortion, while the converse may not hold

— A 'universal’ space: Can embed arbitrary metrics on finite
spaces. e.g. Wi (/1)

» Use Sinkhorn iteration to approximate Wasserstein distance.

— Efficient computation.
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Learning Entropic Wasserstein
Embeddings

Motivations

» What can we embed in theory?

— Metric spaces A and B, map ¢ : A — B is embedding of A
into B

- [_dA(U, V) < dB((b(u)a d)(v)) < CLdA(U? V)7VU, ve A

— The distortion of the embedding ¢ is the smallest C such that
the equation holds.

— Can characterize how “large” a space is (its representational
capacity) by the spaces that embed into it with low distortion.
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Learning Entropic Wasserstein
Embeddings

The learning task

» Objects C: words, images, nodes
» target relationships r: {(u(), v(D r(u(), v(D))}
» Our goal is to find a map ¢ : C — Wp(x) such that the

relationship r(u,v) can be recovered from the Wasserstein
distance between ¢(u) and ¢(v), for u, v € C
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Learning Entropic Wasserstein
Embeddings

Representation

» Discrete distributions on finite sets of points in R”

M M
W= Z uisd v = Z v;(S)(,') = Wp(u,v)
i=1 i=1
M M
Z ul- g Z VI- = ]_’ ul'a Vi 2 O,VI e {]_, “eey M}
i=1 i=1

» Fix weights and only learn positions.
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Learning Entropic Wasserstein
Embeddings

Optimization

» replace W, with the Sinkhorn divergence W,’,\
» Try to find

@—argmm*ZEWA (@(u), (1)), rD)

PeH
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Empirical Study

Embedding complex networks

> Input space C: collection of vertices for each network

» To learn a map ¢ such that Wi(¢(u), #(v)) matches the
shortest path distance between vertices u and v.

» Minimize mean distortion

1 (D), p(v1D)) = de(vi, )]
e ()

¢4 = argmin
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Empirical Study

Embedding performance on random networks

Distortion Distortion
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(a) Random scale-free networks. (b) Random small-world networks.
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Empirical Study

Embedding performance on real networks

Distortion Distortion
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(a) arXiv co-authorship. (b) Amazon product co-purchases.
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Empirical Study

Word2Cloud: Wasserstein word embeddings

> sentence s = (xg, X1, ...Xp), word X;

» Use a Siamese network to learn word embeddings
Py = arg¢min > V(@) S0P H(1=r)[m—= Wi (é(x), 6()))

where r=1 for related embeddings and r=0 for unrelated ones.
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Word2Cloud

Empirical Study

» Nearest Neighbors

one: f, two, i, after, four
W1 (R?) | united: series, professional, team, east, central
algebra:  skin, specified, equation, hilbert, reducing
one: two, three, s, four, after
W (R®) | united:  kingdom, australia, official, justice, officially
algebra:  binary, distributions, reviews, ear, combination
one:  six, eight, zero, two, three
Wf‘(R4) united:  army, union, era, treaty, federal
algebra:  tables, transform, equations, infinite, differential

Table 1: Change in the 5-nearest neighbors when increasing dimensionality of each point cloud with
fixed total length of representation.
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Empirical

Word2Cloud: Visualization

Study

- soccer
e politics
—art

soccer
baseball
football
basketball
rugby
tennis
senate

g
3
@
2

(a) Densities of three embedded words.

(b) Class separation.

L
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(d) Explaining a failed association: nice.




