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Motivation

e (NN has been very successful for a wide
variety of applications
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Slide borrowed from Li Yi
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http://graphics.stanford.edu/courses/cs468-17-spring/LectureSlides/GraphCNN.pdf

Motivation

e CNN nicely exploits the Grid Structure
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2D convolutional operator as applied to a grid-structured input (e.g. image).

Images borrowed from Graph attention
networks
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http://petar-v.com/GAT/

Motivation

° What about data with arbitrary structures like Graphs?

Social networks
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Also chemistry, physics, communication networks, social science etc.

Image borrowed from Bresson’s
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Motivation

What if the data looks like this — ®

We can Still Perform Convolution as below ®

Image Borrowed from Graph attention networks

A desirable form of a graph convolutional operator.
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Graph Definition

Graph G=,¢)

Vertices V={1,...,n}
Edges ECY XYV

Vertex weights b; >0fori eV

Edge weights aij > 0 for (i,j) € £

Borrowed from Yi Li
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http://graphics.stanford.edu/courses/cs468-17-spring/LectureSlides/GraphCNN.pdf?fbclid=IwAR11EFC0wSIN8WZ9vDN2wj8ZvpSChhSjN1zZTkuMnVznfDjEEUvU-unwud0

Outline

e Background:

e Spatial vs Spectral Domains
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Spatial vs Spectral

e Two major approaches to build Graph CNNs
o Spatial Domain:
m Perform convolution in spatial domain similar to images (euclidean
data) with shareable weight parameters
o Spectral Domain:
m Convert Graph data to spectral domain data by using the eigenvectors
of laplacian operator on the graph data and perform learning on the
transformed data.
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Spatial vs Spectral - 2D Image

e (Convolution comparison:
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Borrowed from Sidd Signal
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https://www.youtube.com/watch?v=oACegp4iGi0

Spatial Domain

Standard CNN on Images:
hy hy ..
O
RS
O (T)\O h;

Update Rule:
R+ — 4 <W(()l)h(()l) +WORD 4.4 Wg)hg))

Zhiyao Yan, Sainan Liu, Gautam Nain

CNN on Graphs:

Update Rule:

Cij: norm. constant

hZ(z+1) _ (h(l)wél) n Z %h(.l)wgl)) N; : neighbor indices
' (per edge)

Images borrowed from Kipf
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http://deeploria.gforge.inria.fr/thomasTalk.pdf

Spectral Domain -1D Case

® [requency Space

o We can use the Fourier basis to transform
the image to frequency space.

o The Frequency space data provides us
with a different representation of our
Image data

o This new representation can be used to
learn different sets of features for the
image data.

o Row vectors of Bforms the fourier basis
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Spectral Graph Theory

e Discrete Laplacian (Graphs) e Gradient in graphs is

calculated by computing

Laplacian of / is given by: the differences (derivative

Af= V. (Vf ) for the discrete case) along
NS N
div d the edges
gra

e The divergence operator
for graphs can directly be
given by the incidence

Where A is the laplacian operator

For Graphs the laplacian operator can be defined matrix

in terms of the incidence matrix as below:
Incidence Matrix:

_ T

Lf=K Kf K'is an mxn matrix where m is the

Where K is the incidence matrix and £ is the number of edges and n is number of

laplacian matrix. Therefore, nodes/vertices

L=KTK 1  ife=(v,w)andv < w
K.y =< -1 ife=(v,w)andv > w

0 otherwise.
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Spectral Graph Theory

e Graph Laplacian

Core operator in spectral graph theory.
fj
Represented as a positive semi-definite n X n matrix

® Unnormalized Laplacian A=D-A ’
® Normalized Laplacian A=1- D‘1/2AD‘1/2
® Random walk Laplacian A=1I-D'A

where A = (a;;) and D = diag(Z#i ai;)

Borrowed from Yi Li
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Spectral Graph Theory

e (Graph Laplacian - Example

o o ® b o
One-dimensional Two-dimensional
(Af)i=2fi — fi-1— fira (Af)i; =~ Afij — fic1j — fivrj
- fij—1— fij+1
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Spectral Graph Theory

e Spectral Decomposition

@ A Laplacian of a graph of n vertices admits n eigenvectors:
The laplacian Ady, = Moy, k=1,2,...
eigenbasis is a
generahzatpn o Eigenvectors are real and orthonormal (@x, dr/) L2(v) = Okk-
of the classical (self-adjointness)
fourier basis to
non-Euclidean

domains.

® Eigenvalues are non-negative O0=XAM<A<...< A\,
(positive-semidefiniteness)

@ Laplacian eignenvectors are also called Fourier basis functions/modes.

@ FEigendecomposition of graph Laplacian:

A=3TAdD

where ® = (¢,...,¢,,) and A =diag(A1,...,A\n)  Borrowed from Kipf
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Spectral Graph Theory

e Relation with Euclidean Spectral Analysis

+1

@ FEuclidean domain: \ / AN / \

™ 0 +m

First eigenvectors of 1D Euclidean Laplacian = standard Fourier basis

@ Graph domain:

First Laplacian eigenvectors of a graph

Lap eigenvectors related to graph geometry
(s.a. communities, hubs, etc), spectral clustering!'’!

[10] Von Luxburg 2007
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Spectral Graph Theory

e Relation with Standard Spectral Analysis

+ag$ +03/\/\/+
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Spectral Graph Theory

e (Operate on “spectrum” of a matrix representing the graph (e.g. adjacency or
Laplacian matrix)
e« L=D-A
L - Laplacian matrix
D - Degree matrix
A - Adjacency matrix
* Look at the eigenvectors and eigenvalues of the matrix
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Spatial vs Spectral - A brief history

«Spatial methods” Relation Nets
p M?)Anot|'“e?ta| Qantnrn at al ':nraphSAGE
ilton et al.
(CVPR 2017) ami
Original GNN GG-NN Pro%r"aamzn?sseGraphs NIPS 2017)
=  Gorietal. Li et al. —

(2005) (ICLR 2016) gﬁnﬂ;f'e'tv'; ArtBohd NRI
(ICML 2017) — GAT f:&‘;_eztoﬂ'é
Velickovié etal. © )

(ICLR 2018)
GCN
Kipf & Welli .
(:FC):LR 281 |7n)g “DL on graph explosion”
Other early work:
’ - Duvenaud et al. (NIPS 2015)
- Dai et al. (ICML 2016)
GSpethé?\:N ChebNet ; ., - Niepert et al. (ICML 2016)
rap _| Defferrard etal. J Spectral methods - Battaglia et al. (NIPS 2016)
Bruna et al. (NIPS 2016) - Atwood & Towsley (NIPS 2016)
(ICLR 2015) - Sukhbaatar et al. (NIPS 2016)

Zhiyao Yan, Sainan Liu, Gautam Nain

Lecture13 22

Image borrowed from Kipf




Outline

e (Challenges

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 23



Challenges faced by Graph CNN:

How to define compositionality on graphs (i.e. convolution, downsampling, and

pooling on graphs) ?
e How to ensure generalizability across graphs?
e And how to make them numerically fast? (as standard CNNSs)

graph structure does not
has a natural alignment

grid structure has a
natural alignment

G
N
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Outline

e Paper:
e DCNN
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DCNN-Graph Diffusion

Diffusion-Convolutional Neural Networks

James Atwood and Don Towsley
College of Information and Computer Science
University of Massachusetts
Ambherst, MA, 01003
{jatwood|towsley}@cs.umass.edu

Abstract

We present diffusion-convolutional neural networks (DCNNs), a new model for
graph-structured data. Through the introduction of a diffusion-convolution oper-
ation, we show how diffusion-based representations can be learned from graph-
structured data and used as an effective basis for node classification. DCNNs
have several attractive qualities, including a latent representation for graphical
data that is invariant under isomorphism, as well as polynomial-time prediction
and learning that can be represented as tensor operations and efficiently imple-
mented on the GPU. Through several experiments with real structured datasets, we
demonstrate that DCNNSs are able to outperform probabilistic relational models
and kernel-on-graph methods at relational node classification tasks.
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DCNN-Graph Diffusion

e Problems involving spreading/propagating along edges of a graph
e [nformation about neighbors of nodes can help classification of nodes or an
entire graph

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 27



DCNN-Graph Diffusion % o

R O
S 00 S
O
e Random walk o g A .
e PageRank R, J-Q o
9 P~ g 0T 09 0o
* Heat diffusion o 30@8 W
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g4 ®
PageRank
e

Heat diffusion Random walk
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DCNN-Heat Diffusion

continuous
ot dz2 P 922)

u - temperature

ou 9 X,Y,Z - coordinates
E—av u=0 t - time
a - thermal diffusivity
graph
d_qb . kszb — O ¢ - temperature
dt T k - heat capacity
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DCNN-Heat Diffusion on Graph

dé:
dt :—kZA ¢ ¢J)

= —k (¢z‘ D A - ZAiquj)
g J

=—k (¢z‘ deg(v;) — Z Aijqu)
J

=~k Y _(6; deg(vi) — Aij) ¢;

j
=—k Z (E’J) ?;
j
dp
o —k(D — A)¢p
= —kL¢, ¢ - temperature
k - heat capacity
do 2
E — kv QS =0 heat d|ffu5|on

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 30



DCNN

Diffusion-Convolutional Neural Networks

« Each node and edge in a graph is represented by
some features X
« Use the power series P of the transition matrix to wieixn
model diffusion A
« Using the features X, power series P, and some 1
learned weights W, we can propagate information We Hx R
through the graph
"‘1{ Py % }N:
t—— =~
Ny F
(a) Node classification
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DCNN

P: degree normalized transition matrix

P = [P, P2, ..., PH-1]

P=D'A

Pt = [0.5 ,0.5 , 0. ],
[0.333 ,0.333 ,0.333 ],
[0. ,0.5 ,0.5 ]

P2 = [0.417 ,0.417  ,0167 |,
[0.278 ,0.444  ,0.278 |,
[0.167 ,0417  ,0.417 ]

Zhiyao Yan, Sainan Liu, Gautam Nain
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D - Degree matrix
A - Adjacency matrix
H - number of hops



DCNN

. —N—
A
[T
m T“:d ) 9 "¢
! 2
LGE L] 1 4
M H x
WEHXF) WEHxP s
M{ Py % }N‘ Nr{ Pt % }"t E‘% * ) ) }N'
M F M F M
(a) Node classification (b) Graph classification (c) Edge classification

Figure 1: DCNN model definition for node, graph, and edge classification tasks.
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DCNN

Z, = f(W°® PrX,)

Z, Ni x Hx F activation N, = number of nodes
W, : HxF learned weights ~ H = number of hops

x : F = number of features
P : Ni x H x N power series t = graph ID
X; N; x F node features
f nonlinear function

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 34



DCNN

P: degree normalized transition matrix

W1 W1a +
: Wy (b/2 +e/2) +
RN Wq (@/3 + ¢/6 + /6 +i/6 + m/6)

P =[P, P?, ..., PH]
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DCNN

e High performance

e Slow
e Polynomial growth
* O(N¢F)

e High memory usage
* O(N¢#H)

e \Works up to hundreds of thousands of nodes

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 36



DCNN

cites content
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Graph Attention Networks (GAT

GRAPH ATTENTION NETWORKS

Petar Velickovic¢* Guillem Cucurull*
Department of Computer Science and Technology Centre de Visi6 per Computador, UAB
University of Cambridge gcucurull@gmail.com

petar.velickovic@cst.cam.ac.uk

Arantxa Casanova* Adriana Romero

Centre de Visié per Computador, UAB Montréal Institute for Learning Algorithms
ar.casanova.8@gmail.com adriana.romero.soriano@umontreal.ca
Pietro Lio Yoshua Bengio

Department of Computer Science and Technology ~Montréal Institute for Learning Algorithms
University of Cambridge yoshua.umontreal@gmail.com

pietro.lio@cst.cam.ac.uk

ABSTRACT

‘We present graph attention networks (GATSs), novel neural network architectures
that operate on graph-structured data, leveraging masked self-attentional layers to
address the shortcomings of prior methods based on graph convolutions or their
approximations. By stacking layers in which nodes are able to attend over their
neighborhoods’ features, we enable (implicitly) specifying different weights to
different nodes in a neighborhood, without requiring any kind of costly matrix op-
eration (such as inversion) or depending on knowing the graph structure upfront.
In this way, we address several key challenges of spectral-based graph neural net-
works simultaneously, and make our model readily applicable to inductive as well
as transductive problems. Our GAT models have achieved or matched state-of-the-
art results across four established transductive and inductive graph benchmarks:
the Cora, Citeseer and Pubmed citation network datasets, as well as a protein-
protein interaction dataset (wherein test graphs remain unseen during training).
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Graph Attention Networks (GAT)

* Motivation: o
e Self attention provides
powerful models for machine A o USRI

he sits down at the piano and plays

translation task L —

e Attention networks has less N Y e Y N
computational complexity —

e Attention networks can be N~
parallelized for faster

products <unk> have to be first to be winners
computations. N

P Machine transla-tion task are everyone in the world is watching us vc'ry closely
similar to Graphical data Figure 4: Examples of intra-attention (language
e This paper utilizes attention modeling). Bold lines indicate higher attention

networks for araph structured scores. Arrows denote which word is being focused
grap uctu when attention is computed, but not the direction of

data. the relation.
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GAT ARCHITECTURE

° Input to the Attention Network is a set of node featuresh e {hl,hg hN} where
n: € RF and F is the number of features each node.

o A smglg Graph Attentional Layer produces a new set of node featuresh’ € {h h?v}
where h! € R and F’is potentially new cardinality for each node.

e A shared linear transformation, parameterized by the weight matrixw ¢ RF *F is

applied to every node.
e Then a self attention mechanism is performed on these transformed features.

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 41



GAT ARCHITECTURE

e Attention Mechanism i
o asingle layer feed- forward .
network o
o Parameterized by a weight g
vector @ € R S

o Masked attention is performed

by computing @;; for nodesj € 4
some neighborhood of node |
a
exp (LeakyReLU (a’T [Wﬁi||wﬁj]))
Y Teen e (LeakyReLU (a7 [Wh,|[ W) ) S - - - )

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 42



GAT ARCHITECTURE

e Multi-head Attention
o Brings stability to the
learning process
o Parallelly executes K
attention mechanisms -

concat/avg

An illustration of multi-head attention with K=3 heads by node 1
on its neighbourhoods

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 43



Properties of GAT

Computational and Storage Efficiency

Fixed number of parameters (independent of input graph size)
Localisation - acting on a local neighbourhood of a node
Ability to specify arbitrary importances to different neighbours
Applicability to inductive problems

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 44



GAT Applications

e Mesh Based Parcellation of the
cerebral cortex
e Neural Paratope Prediction

(a) Brain (b) Ground truth (c) NodeAVG
(d) NodeMLP (e) Jakobsen et al. [22] (f) GCN (g) GAT
Antibody amino acid binding probabilities to ) . . .
the antigen (in goid) assigned by our model Normalised antigen attention coefficients for a
Area parcellation qualitative results for several methods on a test subject. The approach of for a test antibody-antigen complex. Warmer > "81€ (binding) antibody amino acid (in red).
i X L ) . Warmer colours indicate higher coefficients.
Jakobsen et al. (2016) is the prior state-of-the-art. colours indicate higher probabilities.
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Outline

e Paper:

e SyncSpecCNN
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SyncSpecCNN

SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation

Li Yit Hao Su! Xingwen Guo? Leonidas Guibas!
Stanford University 2The University of Hong Kong

Abstract
KDAZA
N
In this paper, we study the problem of semantic annota-

tion on 3D models that are represented as shape graphs. A / )
functional view is taken to represent localized information — part scgmentation
on graphs, so that annotations such as part segment or \

keypoint are nothing but 0-1 indicator vertex functions.

Compared with images that are 2D grids, shape graphs [I]

are irregular and nonisomorphic data structures. To enable shape graph Pt

the prediction of vertex functions on them by convolutional keypoint prediction
neural netw.or ks, we_r esort 1o sp ectra.l _CNN meth04 that Figure 1. Our SyncSpecCNN takes a shape graph equipped with
enables weight sharing by parameterizing kernels in the vertex functions (i.e. spatial coordinate function) as input and
spectral domain spanned by graph laplacian eigenbases. predicts a per-vertex label. The framework is general and not limited

to a specific type of output. We show 3D part segmentation and 3D
keypoint prediction as example outputs here.

Under this setting, our network, named SyncSpecCNN,
strive to overcome two key challenges: how to share

Yi, L., Su, H., Guo, X., Guibas, L. (2017
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SyncSpecCNN

e Problem:
e |nput:
e Shape Graph (L)
e \ertex Functions
e Qutput:
e \ertex Label

Zhiyao Yan, Sainan Liu, Gautam Nain

SO ISISISHN
OIS ISISIS

e e st

i

shape graph
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http://openaccess.thecvf.com/content_cvpr_2017/poster/832_POSTER.pdf

SyncSpecCNN

e (Challenges:

> Lack of a translation structure, which ) | -
is the key of using convolution filters . /a
and allowing weight sharing ¢

> It is not trivial to downsample a . .. ®
graph, setting challenge for effective '. - .
multi-scale analysis. X _’. y

-
0.; > Connectivity between different graphs
varies a lot. Filters learned for one graph

cannot easily generalize to new graphs.

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 49
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SyncSpecCNN

e Solutions:
e | ack of translation structure
= Spatial convolution = point-wise multiplication in spectral domain.

e Hard to do effective multi-scale analysis
= Spectral dilated convolution

e Non-isometric shapes does not generalize well
= Functional map for synchronization

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 50



SyncSpecCNN

e Solutions:
e | ack of translation structure
= Spatial convolution = point-wise multiplication in spectral domain.
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SyncSpecCNN

0.8 0.8

0.6 0.6

Fourier 32»:ﬂT?T99 . e o Inverse Fourier -
Transform 7y e"e o e et B
input graph function  spectral representation | '\ convolution output
* [ |
y > Spatial convolution is equivalent
Fourier 33‘;\/\/\ to point wise multiplication in the
Transform ° spectral domain according to
S convolution theorem.
spatial filter spectral fiter > Difficult spatial convolution can be

replaced by easy multiplication.

Yi, L., Su, H., Guo, X., Guibas, L. (2017
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SyncSpecCNN

e Solutions:
o

e Hard to do effective multi-scale analysis
= Spectral dilated convolution

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 53



SyncSpecCNN

e Receptive Field Recap for Images

by Dang Ha The Hien

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 54


https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807

SyncSpecCNN

e Dilated Convolution in 2D

1-dilated 2-dilated
Receptive field = 3x3 Receptive field = 7x7

4-dilated
Receptive field = 15x15

(a) (b)
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https://arxiv.org/pdf/1511.07122.pdf

SyncSpecCNN

e Spectral Dilated Convolution
« Parameterize spectral filters as linear combinations of basis filters

W% +a2/\/+a3\\/+a4 Mm\/\;...

« Control the spatial support of spectral filters through adjusting the
basis filter bandwidth

G ot )
« The smaller the bandwidth spectral basis f"ter/\/ /\/v ‘r

is, the less smoother the
filter is, the larger spatial _ o
support it will have spatial basis filter
\_ o,

Yi

L., Su, H., Guo, X., Guibas, L. (2017
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SyncSpecCNN

e Solutions:

e Non-isometric shapes does not generalize well
= Functional map for synchronization
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SyncSpecCNN

e (Cross Domain Consistency
Spectral Domain 1 Spectral Domain 2

- Spectral domain is
- independently defined for .
I each shape graph ;

The same spectral function would
induce very different spatial
functions on different graphs

Cross domain parameter sharing
is not valid
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SyncSpecCNN

e (Cross Domain Consistency

Forward Transform
\ /
0 Spectral Multiplication
share meter
/ \ \- Backward Transform
- = EER-
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SyncSpecCNN

e Different domains need to be synchronized.

Spectral Domain 1 / Canonical Domain\ Spectral Domain 2
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SyncSpecCNN

e Functional Map

Figure 2.1: A point to point map 7' : M — N can be represented as a
functional map Tr: a correspondence between functions f : M — R and
functions g : N — R. Given a choice of basis for functions on M and N, the
functional map can be concisely represented as a matrix C.

SIGGRAPH2014 Course Notes
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SyncSpecCNN

e [unctional Map g A
o |let g:N—R g=>,b¢Y
f:M—=R f=3, a6
e Original Mapping: T : M — N
e [unctional representation of T"is: Tr : F(M,R) — F(NR)
e \While’T" maybe a complicated mapping between surfaces, Tr acts linearly
between function spaces.

g=Tr(f) =Tp(X;a:i¢}") =3 aiTp($)) = 3 ai 325 ¢i0) =303, aicid)

cij =<Tr(¢}"), ¢} >

SIGGRAPH2014 Course Notes
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SyncSpecCNN

e Functional Map
I-

f

" e - . -
W 1 W 1 N
(a) source (5) ground-truth  (c¢) left to right (d) head to tail
map map map

SIGGRAPH2014 Course Notes
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SyncSpecCNN

e Functional map for domain synchronization
e Use linear maps to align individual graph bases with bases from a
canonical domain, for better generalizability of spectral filters across
domains.

Forward Transform
0 Spectral Multiplication
@ Backward Transform

[ Functional Map C1 ] [ Functional Map C2 J

-_...

- a1 i Bl

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 64


http://openaccess.thecvf.com/content_cvpr_2017/poster/832_POSTER.pdf

SyncSpecCNN

e Spectral Transformer Network
e SpecTN is used to learn the linear map. SpecTN is trained together with
the end task

—————————

o ———
-
-

——— -
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SyncSpecCNN

e Spectral Transformer Network
e (Generates high dimensional transformation, sensitive to initialization. (15 x
45 matrix)
Cpre,i
e Pre-trained to get a good starting point
minimizee ., ||SpecTN(By; : ©) — Cprei||”
e Fine tuned with the end task learning

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 66


http://openaccess.thecvf.com/content_cvpr_2017/poster/832_POSTER.pdf

SyncSpecCNN

e Synchronization visualization

after synchronization

Yi, L., Su, H., Guo, X., Guibas, L. (2017
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SyncSpecCNN

e Network Architecture

v y
Input J—* FT (SV0 @l ReLU » FT SV [E->©'> FT SV @~ ReLU » FT (SN -G

y
FT [SM @~ ReLU » FT [SM [Bl)-&

<+— SpecTN

v

<+— SpecTN

Output +«—{IXICHHV @+ ElSM FT « reLU < ([HSM FT < Of.*@«.«é« FT 4 ReLU «.«@«.«é« FT <
t

Forward Transform @ Backward Transform
0 Spectral Multiplication Spectral Transformer Network
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SyncSpecCNN

e Part segmentation and keypoint detection results.

b ol S ot

part segmentation key point prediction

Yi, L., Su, H., Guo, X., Guibas, L. (2017

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 69


http://openaccess.thecvf.com/content_cvpr_2017/poster/832_POSTER.pdf

Outline

e Summary
e Takeaway & References
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Graph CNN Summary

Spatial construction is usually more efficient but less principled. (Diffusion and
Attention papers)

e Spectral construction is more principled but usually slow. Computing Laplacian
eigenvectors for large scale data could be painful. (SyncSpecCNN)

e Research tries to bridge the gap.(GCN by Kipf & Welling , Fast Localized
Spectral Filtering by Defferrard et al)

e (Generalization issue on generic graphs is still a challenge.

Zhiyao Yan, Sainan Liu, Gautam Nain Lecture13 71


https://tkipf.github.io/graph-convolutional-networks/
https://arxiv.org/pdf/1606.09375.pdf

Graph CNN Summary

e Review the challenges
e How to define compositionality on graphs (i.e. convolution, downsampling,

and pooling on graphs) ?
e How to ensure generalizability across graphs?
e And how to make them numerically fast? (as standard CNNSs)
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Outline

e Takeaway & References
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Takeaways

What are graph networks?

What are the two domains the works are relying on?
What are their +'s and -’s”?

What are the applications that can use graph networks?
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Scene Graphs

e Visual Genome

e 2D natural images can be
understood as a scene graph

e Applications to scene
understanding
e  Graph networks used in

generation of scene graphs

from natural images

A bush next to a river.

a woman wearing a brown shirt

Girl feeding large elephantl—( girl H feeding H elephant )

Woman wearing a purple dress
Tree near the water
aman wearing a hat
A handle of bananas.
1a man taking a picture behind girl}
Glasses on the hair.
blue flip flop sandals
I no b

uses on the hillsid

{ man —»{ taking — picture ‘\

\/ behind ——> § girl ]

J
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