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Surface Editing
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Challenge:

How to preserve details of
the surface as much as
possible?




Laplacian Surface Editing
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Why Laplacian?

V:{Vl,...,Vn} A:{éi}
Euclidean . Laplacian
Coordinates Coordinates

L) =V~ 7 2 v,
l ]E

I —— indices of neighbors of v,

Encode Intrinsic Geometry (local shape details) of
the Surface! (How?)



Whiteboard Time



Matrix Form: L =1- D14 A=LV
A 1s the mesh adjacency matrix

D = diag(d,,...,d,) where d;is the degree of

Vi

Theorem: Let G be a graph. Then the dimension of the nullspace of L(G) is
the number of connected components of G.

In a connected mesh, L has rank n-1. Given A and L, V' can be
recovered by fixing one vertex. (Invariant to translation)



Objective

Given the original vertices V' = {vy, ..., Va},
Find a set of new vertices V'= {v'}, ..., v/} such that the desired constraints
vi=u, i€{m,....n},m<n given

by the user’s operation is satisfied, and the detail of the mesh is preserved as
ible.
T/Itljr? #n?zsep’[%sé&ebrr%r function:
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To satisfy constraints
specified by the user

To preserve surface details



Objective
ZII8 —Z(v >||+2||v—u||2

Laplacian Coordinates are only
invariant to translation, not scale or
rotation.

If u; implies a linear transformation
consisting of rotation or scaling,
then details of the surface cannot
be transformed properly.




Objective

To make the laplacian coordinates robust to such linear transformations,

compute an appropriate transformation T for each vertex and revise the
error function:

E(V') =Y [T(v)e, —2)|*+ 3 [Ivi— w2
=1 I=m

T; is unknown but can be expressed as a linear function of V"'

_ . /(12 /112
T; computed by: min ITv, —vi|I*+ . |T;v; — v
,. JEN,
(transformations should be similar for v; and its neighbors)



Objective

Problem:

T; is unconstrained and may lead to the irregular distortions which
are not categorized as rigid body transformation or scaling.

Reasonable T; should consist of translation,
isotropic scales and rotation.



Objective
Linearize Rotation:
3D rotation determined by an axis u and a angle of rotation 6
Assume u = (uy, u,, u3)’ and |[ul| =1 0 —uz w
Associate a skew-symmetric matrix S, = l 1
Forallv, uxv=5S,v

U3 0 U

— U9 U1 0

Then the rotation matrix comouted bv: |
R=¢5%%=1T+sinfS, + (1 —cosh) Sz
(Rodrigues formula)

A linear approximatign IS needed.
Omit (1 — cosf) S, when 6 is small.



Obijective:

Add in isotropic scaling s and translation t, put in homogeneous system:
sR t
0 1

Leth= (hb hg, h3)T:S sinf u

s —hy  hy,
_| A S —h, ¢,
L —22 hy s1 t,
0 0 0 1

T, is characterized by s, h and t



Objective:

ka O sz —ka 1 O O
Vi =V 0 Vi 0O 1 O
y 4 X .
Construct 4;= v, 0 0 0 1| ke{juAs
y X

and b,= v, , ke {ijuA]
\ 1)

T; determined by minimizing || 4 (if,) - b, ||
t;




Limitation

Can’t handle rotation with large angle.



Experiment
Basic Mesh Editing




Experiment

Coating transfer:
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Figure 4: Coating transfer; The coating of the Bunny (a) is
transferred onto the mammal’s leg (b) to yield (c).
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Figure 5: The coating of the Max Planck is transferred onto
the Mannequin. Different levels of smoothing were applied
to the Max Planck model to peel the coating, yielding the
results in (c) and (d).



Coating transfer:

Let and be the Laplacian coordinates of the vertex i in the original surface and
the same surface after smoothed (low-frequency surface). Then we can get the
encoéf.ng 0ihe coating at vertex i:



Coating transfer:

Assume that surface S and surface U share the same connectivity. Then, the
coating transfer from surface S onto surface U is expressed as follows where A
denotes the Laplacian coordinates of the vertices of U:

U'=L""(A+E)



Mapping

To do the coating transfer between arbitrary surfaces with different connectivity,
we need to define a mapping between the two surfaces. This mapping is
established by parameterizing the meshes over a common domain.
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Figure 6: Coating transfer. The orientation of a coating detail (a) is defined by the local frame at the corresponding vertex in the
low frequency surface in (b). The transferred coating vector needs to be rotated to match the orientation of the corresponding
point in (c) to reconstruct (d).



Mixed Details

Figure 8: Mixing details using Laplacian coordinates. The Laplacian coordinates of surfaces in (a) and (b) are linearly blended
in the middle to yield the shape in (c).




Transplanting Surface Patching

e Find the transitional regions
e Create the mapping

e |Interpolate the Laplacian coordinates



The Laplacian in RL: Learning Representations with
Efficient Approximations
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Reinforcement Learning

Discrete time frame t

State of environment s, € S

Agent take action a; € A according to policy P(a;|s;): = m(a;|s;)
Environment give agent reward R;(s¢, a;)

Environment state change to s;.1~ P(S¢41|5e at)

Goal: Learn policy maximize the accumulated reward

z Vth
t

y is discounted factor
e Often maintain replay buffer B = [s;, a¢, 13, S¢+1le=1..n5



Representation in Reinforcement Learning

Performance of ML algorithm relies on the data representation
Natural question:

o How to get a better task-orientation representation in RL
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Theoretical framework

A finite state space set S with |S| elements
Probability measure p distributed over S
Hilbert space H, for which element f are function f:S - R

Linear operator A: H - H

Inner product: (f, g)u: = [, f(wWgw)dp(u)

Then it define a complete Hilbert space



Definition of Laplacian

Self-adjoint linear operator A: (f,Ag)y = (Af, g)y
Self-adjoint affinity: D:SxS - R™

Linear operator A:  Af(w):= [_f()D(w,v)dp(v)

Graph Laplacian L:  Lf(u) = f(u) —Af(u) = I —-A)f(u)

Goal: find d eigenfunction of the smallest d eigen value



Back to Maze Problem

e Reward: reach red target -> positive reward; otherwise 0

e |If state representation encode the real distance

Policy will simply be:

o Minimize the distance to target for each step

Intuition:

o Laplacian keep info of real distance




Graph Formulation in RL

Given policy 7, P(s¢411S¢, ar) = PT(Se411S¢)

Transitional distribution: P™(u|v)

p(w) =X P"(wulv)p(v) or  p(U) = [PT(ulv)dp(v)

1PT(wlw) | 1P™(ulv)
2 p) 2 p(w
Next: Find smallest eigenfunction (eigen vector) by optimization

d-dim embedding: ¢(u) = [fi(w), ..., fz(w)]

Discrete: D(u,v) =



Spectral graph drawing

Goal: Find embedding (eigen vector) preserve affinity
Objective G:

G = Z(fk; Lfk)H
k

1
=~ j f > (e = @)D, v)dp()dp(v)
SvYS k

Intuition: Pushing the high affinity embedding closer
Additional constrain:

<fk:fj>H = Jy; , Iimpose orthonormal basis



e Previous objective and constrain: Too hard in experiment!

e Solution: Usgd

Objective to learn

t) St+1]t=1,..,N

NI

}J\E



Small summary

We want better state representation to preserve affinity
It is known that Laplacian eigenfunction is such thing
Direct computation of eigenfunction is intractable
Using Neural Network to approximate

Build a objective function

Optimized NN with the derived loss



Experiment

1. Collect trajectory with model-free policy (random) for buffer
2. Learning state embedding based on objective

3. Evaluate the embeddings: (maze environment)
o Goal achieving tasks: rewarded for reaching a given goal state z;
o Two type of reward: sparse reward and shaped reward

o Shaped reward: 1. = —||¢(s¢+1) — P (zg))l|



Experiment

RL algorithm: DQN!
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test success rate
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Experiment on continues state

RL algorithm: DDPG'
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Summary

e Laplacian: both map and operator
e Laplacian induced representation can encode local structure

e Eigenfunction/eigenvalue of L can be good basis



Thank you and happy valentine day !

KDNVeETS. com

my DATA ANALYSIS HAS IDENTIFIER
3 PefrecT  VALENTINE DATES FOR
ME: <IR), CORTANA, AND ALEXA.




