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Many Names

* Dimensionality reduction
* Embedding
* Multidimensional scaling

* Manifold learning



Basic Task

Given pairwise distances
extract an embedding.

s it always possible!?
What dimensionality?



Metric Space

Ordered pair (M, d) where Mis a setand d satisfies
d(zx, ) 0
d(x,y) = () = xr =1y




Many Examples of Metric Spaces
R™,d(z,y) = ||z — yll,

S C R?, d(z,y) := geodesic

O™ (R), d(f, 9)? = / (f(z) - g(2))? da



Isometry [ahy-som-i-tree];

A map between metric spaces
that preserves pairwise distances.



Can you always embed a
metric space
isometrically in ?



Can you always embed a
finite metric space
isometrically in ?



Disappointing Example

X :={a,b,c,d}
d(a,d) =d(b,d) =1
d(a,b) = d(a,c) = d(b,c) = 2
d(c,d) = 1.5

Cannot be embedded in b
. a
https://chiasme.wordpress.com/2013/1 0/07/whendoEmqus‘p!cedbe@séero§Q§Spg e I C
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Riemannian manifold

A Riemannian space (M, g) is a

real, smooth manifold M equipped with
an inner product gp on the tangent
space TpM at each point p that varies
smoothly from point to point.




Embedding of Riemannian Manifold

Strong Whitney embedding theorem:

Any smooth real m-manifold (required also
to be Hausdorff and second-countable) can
be smoothly embedded in the real 2m-
space (R2m), it m> 0.

 This is the best linear bound on the
smallest-dimensional Euclidean space that
all m-dimensional manifolds embed in.

- Although every n-manifold embeds in R27,
one can frequently do better.




Embedding of Riemannian Manifold

Theorem. Let (M,g) be a Riemannian manifold and f: M™ — R" a short C*-embedding (or
immersion) into Euclidean space R”, where n= m+1. Then for arbitrary € > 0 there is an
embedding (or immersion) f.: M™ = R which is

i. in class C1,
ii. isometric: for any two vectors v,w € T,(M) in the tangent space at x e M,

9(v,w) = (dfe(v), dfe(w)),

iii. e-close to f:

|f(z) — fe(z)| < eVae M.

In particular, any m-dimensional Riemannian manifold
admits an isometric C'-embedding into an arbitrarily
small neighborhood in 2m-dimensional Euclidean space.

For example, it follows that any closed oriented
Riemannian surface can be C' isometrically embedded
into an arbitrarily small e-ball in Euclidean 3-space (for
small there is no such C2-embedding since from

the formula for the Gauss curvature an extremal point of
such an embedding would have curvature = £-2).
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Embedding in 7,



Approximate Embedding

| o p(f(x), f(y))
expanSIOIl(f) — . p({E,y)
p(z,y)

contraction( f) := max

X

distortion( f) := expansion(f) X contraction( f)

http://www.cs.toronto.edu/~avner/teaching/S6-24 1 4/LN | .pdf



Well-Known Result

Theorem (Bourgain, 1985).
Let (X\d) be a metric space on n points. Then,

(X7 d) CO(log n)> gO(logQ 7)

1%

Any n-point metric space (X, D) can be embedded in ¢> (in fact, in every {,) with
distortion O(logn).

http://ttic.uchicago.edu/~harry/teaching/pdf/lecture3.pdf



THE EUCLIDEAN SPACES £¢

metric, the simplest in many respects, and the most restricted. Every finite /s
metric embeds isometrically in ¢, for all p. More generally, we have the following

THEOREM 8.1.1 Duworetzky’s theorem (a finite quantitative version)

For every d and every ¢ > 0 there exists n = n(d,e) < 20(d/<*) sych that (3 can be
(14+¢)-embedded in every n-dimensional normed space.

Metric
spaces

[ Inner
product
\ spaces




THE EUCLIDEAN SPACES ¢4

 Dimension reduction:

THEOREM 8.2.3 Johnson and Lindenstrauss [JL84]

2
For every ¢ > 0, any n-point € metric can be (14¢)-embedded in eg’“"g n/e)



THE EUCLIDEAN SPACES 7%

The spaces (2. are the richest (and thus generally the most difficult to deal with);
every n-point metric space (X, D) embeds isometrically in £ . To see this, write
X ={x1,22,...,2,} and define f: X — €2 by f(z;); = D(x;,x;).

THEOREM 8.2.2

For an integer b > 0 set ¢ = 2b—1. Then any n-point metric space can be embedded
in 02 with distortion ¢, where d = O(bn'/?logn).
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Graph Embedding



THEOREM 8.3.2 Rao [Ra099]
Any n-point planar-graph metric can be embedded in U5 with distortion O(\/logn ).



TABLE 8.5.1 A summary of approximate embeddings

FROM TO DISTORTION REFERENCE
any lp, 1<p< o0 O(logn) [Bou85]
constant-degree expander Ly, p < oo fixed Q(logn) [LLR95]
k-reg. graph, k > 3, girth g £ Q(/9) [LMNO2]
1/b

any (Qbn /" logn) %—1, b=1,2,... | [Mat96]
some Q(nl/)-dim’l. 2b—1, b=1,2,... [Mat96]

normed space (Erdés’s conj.!)
any o O(n) [Mat90]
any Kg, d fixed O(n?/%1og3/? n [Mat90]

(nl/ LdT1)/2]y
2

{5 metric g9 logn/e”) 1+e [JL84]
£1 metric fl'na, 0<a<1 Qa~1/2) [BC03]
planar or forbidden minor 12 O(4/logn) [Rao99]
series-parallel 12 Q(y/logn) [NRO2]

. O(log?® n) | TR
planar £ o(1) implicit in [Rao99]
outerplanar or series-parallel 2 O(1) [GNRS99]
tree 4 1 (folklore)
tree Eooo(log n) 1 [LLR95]
tree 123 O((log logn)'/?) [Bou86, Mat99]
tree o O(n'/(d=1)) [Gup00]
tree, unit edges 02 o(vn) [BMMV02]
Hausdorff metric over (X, D) szf | 1 [FCI99]

sOM) X | log A
Hausd. over s-subsets of (X, D) o0 c(a) [FCI99]
2 O(k)
Hausd. over s-subsets of £% g3 (/)T log & l1+e¢ [FCI99]
EMD over (X, D) 0 O(log | X|) [Cha02, FRT03]
Levenshtein metric 2 > 3/2 [ADG103]
block-edit metric over ¢ 4 O(log d - log™ d) [MS00, CMO02]
(1,2)-B metric ¢Q(Blogm) 1 [c103);
or /£, cf. [Tre01]

any convex comb. of O(logn) [FRT03]

dom. trees (HSTs)
any convex comb. of 20 (Vlognloglogn) | [AKPW95]

spanning trees
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Euclidean Case

D;j = ||x; — zj||3, D € R™*"

Proposition. .

Proof:
D=-2X"X+ diag(XTX)lT + 1dia,g(XTX)T

Embedding via eigenvalue problem (take x; = 0):
|2 — ;12 = lzall2 + Il 112 — 225 - @5
1



Gram Matrix [sram mey-triks]:
A matrix of inner products

X'X
——




Classical Multidimensional Scaling

1. Double centering: B := —%JDJ
Centering matrix J := 1 — %11T

2. Find m largest eigenvalues/eigenvectors

3. X = F,_AL? —

Torgerson,Warren S. (1958). Theory & Methods of Scaling.



Stress Majorization

: 2
min Y (% — [l — )
]

SMACOF:

Scaling by Majorizing a Complicated Function

de Leeuw, J. (1977),"Applications of convex analysis to multidimensional scaling” Recent
developments in statistics, | 33—145.



SMACOF Potential Terms

mmz —|lzs — z;]12)°
Z(algj)2 = const.
ij

Z |lws — 252 = tr(XVXT), where V = 2n — 2117

Zd Nz — 2]l = tr(XB(X)X )

( 2d9. :
,I/j [ ] . o
o=z, €T; 7& Xyl 7& 7

where bij(X) = < 0 ifZUq;:inai?éj
=iy ifi=




SMACOF Lemma

E (dgj)2 = const.

1j
d s —zjll3 = tr(XVXT)
X]

> dllz —zyllz = tr(XB(X)X )
ij

where b;;(X) := 0 il g5 = a5, 5= )

2dY. . : .
_”xi_mjjnz it 72 #xjaz#]

Lemma. Define

7(X,7Z) = const. + tr(XVX ") = 2tr(XB(2)Z ")
Then,
(X, X) < 7(X,2)VZ

with equality exactly when X=2.

>ee Modern Multidimensional Scaling (Borg, Groenen)



SMACOF: Single Step

R min (X, X")
7(X,Z) :=const. + tr(XVX ") — 2tr(XB(Z)Z ")
— 0= Vx[r(X, X")]
= 2XV — 2X*B(X")
— XFH = XFB(XF) VT
VT =(@2nl—-211")"

Objective convergence:
T(XFHL X < 7(XF, XF)



More General Metric MDS

* In general, we minimize directly the square loss on distances

2

stress = £(d;j) = Z(c?’u — f(dj))?/ Z d;

i<j

*  Sammon mapping

1 él\l.. — d;; 2
Sammon’s stress(d;;) = (dj i)
> o<k dek = d;;

This weighting system normalizes the squared-errors in pairwise distances by using
the distance in the original space. As a result, Sammon mapping preserves the
small dj, giving them a greater degree of importance in the fitting procedure than for
larger values of d;

Generally solved by gradient descent
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Non-Linear Dimensionality Reduction

Many data sets contain essential nonlinear structures that
“invisible” to PCA and MDS

Must resort to some nonlinear dimensionality reduction
approaches

Data sampled from a non-linear manifold



The Choice of Distance

 We can try to capture the
manifold structure through
the right notion of distance _—small
directly on the manifold Ny, Gulidean
(geodesic distance)

large
geodesic
distance )



The Challenge of NLDR

* An unsupervised learning
algorithm must discover
the global internal coordi-
nates of the manifold
without external signals
that suggest how the data
should be embedded in
low dimensions
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ISOMAP
(J. B. Tenenbaum, V. de Silva and J. C. Langford)

« Example of non-linear structure (Swiss roll)

* Only the geodesic distances reflect the true low-dimensional
geometry of the manifold

* ISOMAP (Isometric Feature Mapping)
* Preserves the intrinsic geometry of the data
« Uses the geodesic manifold distances between all pairs




ISOMAP (Algorithm Description)

e Step 1
Form a near-neighbor graph G on the original data points, weighing the
edges based on their original distances 4, (;, ;)

e Step 2

Estimate the geodesic distances d,; (i, /) between all pairs of points on the
sampled manifold by computing their shortest path distances in the graph
G.

e Step3

Construct an embedding of the data in d-dimensional Euclidean space Y
that best preserves the distances (MDS).



Near Neighbor Graph

e Step 1

- Determining neighboring points within a fixed radius based on
the input space distance

# €-radius # K-nearest neighbors

- These neighborhood relations are represented as a weighted
graph G over the data points.

T di ional Isomap embedding (with neighborhood graph).




Shortest Path Computation

e Step 2
- Estimating the geodesic distances dGii,j] between all pairs of
points on the manifold by computing their shortest path
distances in the graph G.
Can be done using Floyd/Warshall’s algorithm or Dijkstra’s
algorithm

dg (i, j) = d (i, j) neighborin g i j i, o)

d.(i,j) = othewise do(.\)O/dX(k,j)

fork=1.2,.,N e T L e
doinj) =minf dy (i, ), dyGR)+dy (ko)) ||




Euclidean Embedding

e Step 3

- Constructing an embedding of the data in d-dimensional
Euclidean space Y that best preserves the inter point distances

This is of course nothing but an MDS problem




Recovery Guarantees

Isomap is guaranteed asymptotically to recover the true
dimensionality and geometric structure of nonlinear manifolds.

As the sample data points increases, the graph distances provide
increasingly better approximations to the intrinsic geodesic distances.




# Face

ISOMAP Examples

: face pose and illumination

>
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>
)

Up-down pose
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# Hand writing

: bottom loop and top arch

Bottom loop articulation
-

Top arch articulation

W
Y

MDS :

open triangles

\ | Isomap : filled circles

12 3 45 6 7 8 910

{



Left-right pose

esod umop-dn

FWEST Lighting direction
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Laplacian Eigenmaps
(M. Belkin, P. Niyogi)

- Start same as Isomap, but use a spectral embedding in lieu of MDS
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-005 -0.04 003 -0.02 -0.01 0 001 002 003 004 005

Hole distorts long geodesic distances
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Locally Linear Embeddings (LLE)
(S. T. Roweis and L. K. Saul)

» Define neighborhood relations
between points (build NN graph)
* k nearest neighbors
« e-balls

* Find weights that reconstruct
each data point from its

neighbors:
2
min X, — Wl.ij
il JENG)

. Find low-dimensional
coordinates so that the same

weights hold: X, ,....X, €R’

2

/
min S- 3w

JEN (D)

-—

LLE AL(;;GBITHO\I
O

@ Select neighbors.

Reconstruct L N
with linear !
weights. 0n® o

o @ Map to embedded coordinates.

-7,



From Local to Global

- The weights w, capture the local shape

Invariant to translation, rotation and scale of the neighborhood
If the neighborhood lies on a manifold, the /ocal mapping from the global
coordinates (R”) to the surface coordinates (R?) is almost linear

Thus, the weights w;; should hold also for manifold (R?) coordinate system!

2
min ||X; — W, X;
Vit JEN0)
J
2
!/ !/
min E X, — E W, X,
BT T JEN(D)



Solving the Minimizations

Linear least squares (using Lagrange multipliers)

2

min

wll

X, — Wl.ij

JEN()

J

Tofind x,,...,x, € R‘that minimize,

IIllIl E

a sparse eigenvalue problem is solved. Additional
constraints are added for conditioning:

! 1 ! IT
. n <

l

2
!

X —
WiX;
JEN ()




Comparison: ISOMAP vs. LLE

Global distances Local averaging

k-NN graph distances k-NN graph weighting

Largest eigenvectors Smallest eigenvectors
Dense matrix Sparse matrix
pig
20
10+
0 0
-10 =20
=20 40 0 30
ISOMAP: 541.38 s
0.04 0.04}+
0.02 0.02F
0.00F 0.00F
=0.02 -0.02+
=0.04+ ? -0.04+
2 20 40 004 -0.02 000 002 004 2004 002 000 002 004
LLE: 11.49s RML: 150.458 s LMDS: 21.248 s LLE: 12.784 s RML: 182.535 s m 30447 s

Image from “Incremental Alignment Manifold Learning”” Han et al. JCST 26.1 (201 1).
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Many NLDR Methods

Contents [hide]
1 Related Linear Decomposition Methods
2 Applications of NLDR
3 Manifold learning algorithms
3.1 Sammon's mapping
3.2 Self-organizing map
3.3 Principal curves and manifolds
3.4 Autoencoders
3.5 Gaussian process latent variable models
3.6 Curvilinear component analysis
3.7 Curvilinear distance analysis
3.8 Diffeomorphic dimensionality reduction
3.9 Kernel principal component analysis
3.10 Isomap
3.11 Locally-linear embedding
3.12 Laplacian eigenmaps
3.13 Manifold alignment
3.14 Diffusion maps
3.15 Hessian Locally-Linear Embedding (Hessian LLE)
3.16 Modified Locally-Linear Embedding (MLLE)
3.17 Relational perspective map
3.18 Local tangent space alignment
3.19 Local multidimensional scaling
3.20 Maximum variance unfolding
3.21 Nonlinear PCA
3.22 Data-driven high-dimensional scaling
3.23 Manifold sculpting
3.24 t-distributed stochastic neighbor embedding
3.25 RankVisu
3.26 Topologically constrained isometric embedding
4 Methods based on proximity matrices
5 See also
6 References
7 External links

From Wikipedia

Caltech 101

t-Distributed Stochastic
Neighbor Embedding (t-SNE)



