
Data Embedding: 
A Geometric Perspective

Instructor: Hao Su

Feb 7, 2019



Agenda

• General theories of embedding

• Algorithms of computing data embedding



Agenda

• General theories of embedding

• Algorithms of computing data embedding



Many Names

• Dimensionality reduction 

• Embedding 

• Multidimensional scaling 

• Manifold learning 
…



Basic Task

Given pairwise distances 
extract an embedding.

Is it always possible?
What dimensionality?



Metric Space

Ordered pair (M, d) where M is a set and        satisfiesd



Many Examples of Metric Spaces



Isometry [ahy-som-i-tree]:
A map between metric spaces 
that preserves pairwise distances.



Can you always embed a 
metric space 

isometrically in ?



Can you always embed a 
finite metric space 
isometrically in ?



Disappointing Example

https://chiasme.wordpress.com/2013/10/07/when-does-a-finite-metric-space-embed-isometrically-into-an-euclidean-space/

Cannot be embedded in 
Euclidean space!



Embedding Manifold to 
Euclidean Space



 Riemannian manifold

A Riemannian space (M, g) is a 
real, smooth manifold M equipped with 
an inner product gp on the tangent 
space TpM at each point p that varies 
smoothly from point to point.



Embedding of Riemannian Manifold
Strong Whitney embedding theorem: 

Any smooth real m-manifold (required also 
to be Hausdorff and second-countable) can 
be smoothly embedded in the real 2m-
space (R2m), if m > 0.

• This is the best linear bound on the 
smallest-dimensional Euclidean space that 
all m-dimensional manifolds embed in.

• Although every n-manifold embeds in R2n, 
one can frequently do better.



Embedding of Riemannian Manifold

In particular, any m-dimensional Riemannian manifold 
admits an isometric C1-embedding into an arbitrarily 
small neighborhood in 2m-dimensional Euclidean space.

For example, it follows that any closed oriented 
Riemannian surface can be C1 isometrically embedded 
into an arbitrarily small ε-ball in Euclidean 3-space (for 
small  there is no such C2-embedding since from 
the formula for the Gauss curvature an extremal point of 
such an embedding would have curvature ≥ ε−2).



Embedding in   ℓp



Approximate Embedding

http://www.cs.toronto.edu/~avner/teaching/S6-2414/LN1.pdf



Well-Known Result

Theorem (Bourgain, 1985).
Let (X,d) be a metric space on n points.  Then,

 

http://ttic.uchicago.edu/~harry/teaching/pdf/lecture3.pdf





• Dimension reduction:



ℓd
∞



Graph Embedding
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Euclidean Case

Proposition. .

Embedding via eigenvalue problem (take          ):x1 = 0



Gram Matrix [gram mey-triks]:
A matrix of inner products



Classical Multidimensional Scaling

Torgerson, Warren S. (1958). Theory & Methods of Scaling.

“MDS”



Stress Majorization

Nonconvex!

de Leeuw, J. (1977), “Applications of convex analysis to multidimensional scaling” Recent 
developments in statistics, 133–145.

SMACOF:
Scaling by Majorizing a Complicated Function



SMACOF Potential Terms



SMACOF Lemma

Lemma.  Define

Then, 

with equality exactly when X=Z.

See Modern Multidimensional Scaling (Borg, Groenen)



SMACOF:  Single Step

Majorization-
Minimization 

algorithm



• In general, we minimize directly the square loss on distances

• Sammon mapping

• This weighting system normalizes the squared-errors in pairwise distances by using 
the distance in the original space. As a result, Sammon mapping preserves the 
small dij, giving them a greater degree of importance in the fitting procedure than for 
larger values of dij

More General Metric MDS

Generally solved by gradient descent



Non-Linear Dimensionality 
Reduction



Non-Linear Dimensionality Reduction
• Many data sets contain essential nonlinear structures that 

“invisible” to PCA and MDS
• Must resort to some nonlinear dimensionality reduction 

approaches

Data sampled from a non-linear manifold



The Choice of Distance
• We can try to capture the 

manifold structure through 
the right notion of distance 
directly on the manifold 
(geodesic distance)



The Challenge of NLDR
• An unsupervised learning  
 algorithm must discover  
    the global internal coordi- 
    nates  of the manifold  
    without external signals  
    that suggest how the data  
    should be embedded in  
    low dimensions



Isomap



ISOMAP 
(J. B. Tenenbaum, V. de Silva and J. C. Langford)

• Example of non-linear structure (Swiss roll)
• Only the geodesic distances reflect the true low-dimensional 

geometry of the manifold

• ISOMAP (Isometric Feature Mapping)
• Preserves the intrinsic geometry of the data
• Uses the geodesic manifold distances between all pairs



ISOMAP (Algorithm Description)
• Step 1 

• Form a near-neighbor graph G on the original data points, weighing the 
edges based on their original distances

• Step 2 
• Estimate the geodesic distances            between all pairs of points on the 

sampled manifold by computing their shortest path distances in the graph 
G.

• Step 3 
• Construct an embedding of the data in d-dimensional Euclidean space Y 

that best preserves the distances (MDS).

( )jid ,X

( )jidG ,



Near Neighbor Graph
• Step 1 

• Determining neighboring points within a fixed radius based on 
the input space distance 

           # ε-radius                                # K-nearest neighbors 

• These neighborhood relations are represented as a weighted 
graph G over the data points.

( )jid ,X
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Shortest Path Computation
• Step 2 

• Estimating the geodesic distances           between all pairs of 
points on the manifold by computing their shortest path 
distances in the graph G. 

• Can be done using Floyd/Warshall’s algorithm or Dijkstra’s 
algorithm
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Euclidean Embedding
• Step 3 

• Constructing an embedding of the data in d-dimensional 
Euclidean space Y that best preserves the inter point distances 

• This is of course nothing but an MDS problem



Recovery Guarantees
• Isomap is guaranteed asymptotically to recover the true 

dimensionality and geometric structure of nonlinear manifolds. 
• As the sample data points increases, the graph distances provide 

increasingly better approximations to the intrinsic geodesic distances.



ISOMAP Examples

     # Face                                         # Hand writing 
     : face pose and illumination                     : bottom loop and top arch

MDS :  open triangles 

Isomap :  filled circles





Laplacian Eigenmaps



Laplacian Eigenmaps  
(M. Belkin, P. Niyogi)

• Start same as Isomap, but use a spectral embedding in lieu of MDS

Hole distorts long geodesic distances



Locally Linear Embeddings



Locally Linear Embeddings (LLE) 
(S. T. Roweis and L. K. Saul)

• Define neighborhood relations 
between points (build NN graph)
• k nearest neighbors 
• ε-balls 

• Find weights that reconstruct 
each data point from its 
neighbors:

• Find low-dimensional 
coordinates so that the same 
weights hold: , , dRʹ ʹ ∈1 nx x…

2

( )1
min

ij
j

j N i
ijw
w

=
∈∑

− ∑i jx x

, ( ),

2

min ij
i j N i

w
∈

ʹ ʹ
ʹ ʹ−∑ ∑

1 n
i j

x x
x x

…

'
i ix Y=



From Local to Global

• The weights wij capture the local shape
• Invariant to translation, rotation and scale of the neighborhood 
• If the neighborhood lies on a manifold, the local mapping from the global 

coordinates (RD) to the surface coordinates (Rd) is almost linear 
• Thus, the weights wij should hold also for manifold (Rd) coordinate system!
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Solving the Minimizations
• Linear least squares (using Lagrange multipliers)

• To find                           that minimize,

    
    a sparse eigenvalue problem is solved. Additional 

constraints are added for conditioning:
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Comparison:  ISOMAP vs. LLE

ISOMAP LLE

Global distances Local averaging
k-NN graph distances k-NN graph weighting
Largest eigenvectors Smallest eigenvectors
Dense matrix Sparse matrix

Image from “Incremental Alignment Manifold Learning.”  Han et al.  JCST 26.1 (2011).



Many More Methods



Many NLDR Methods 

•  

From Wikipedia

t-Distributed Stochastic 
Neighbor Embedding (t-SNE)

Caltech 101


